wasmtime/runtime/vm/gc/enabled/
structref.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
use super::{truncate_i32_to_i16, truncate_i32_to_i8};
use crate::{
    prelude::*,
    runtime::vm::{GcHeap, GcStore, VMGcRef},
    store::AutoAssertNoGc,
    vm::{FuncRefTableId, SendSyncPtr},
    AnyRef, ExternRef, Func, HeapType, RootedGcRefImpl, StorageType, Val, ValType,
};
use core::fmt;
use wasmtime_environ::{GcStructLayout, VMGcKind};

/// A `VMGcRef` that we know points to a `struct`.
///
/// Create a `VMStructRef` via `VMGcRef::into_structref` and
/// `VMGcRef::as_structref`, or their untyped equivalents
/// `VMGcRef::into_structref_unchecked` and `VMGcRef::as_structref_unchecked`.
///
/// Note: This is not a `TypedGcRef<_>` because each collector can have a
/// different concrete representation of `structref` that they allocate inside
/// their heaps.
#[derive(Debug, PartialEq, Eq, Hash)]
#[repr(transparent)]
pub struct VMStructRef(VMGcRef);

impl fmt::Pointer for VMStructRef {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Pointer::fmt(&self.0, f)
    }
}

impl From<VMStructRef> for VMGcRef {
    #[inline]
    fn from(x: VMStructRef) -> Self {
        x.0
    }
}

impl VMGcRef {
    /// Is this `VMGcRef` pointing to a `struct`?
    pub fn is_structref(&self, gc_heap: &(impl GcHeap + ?Sized)) -> bool {
        if self.is_i31() {
            return false;
        }

        let header = gc_heap.header(&self);
        header.kind().matches(VMGcKind::StructRef)
    }

    /// Create a new `VMStructRef` from the given `gc_ref`.
    ///
    /// If this is not a GC reference to an `structref`, `Err(self)` is
    /// returned.
    pub fn into_structref(self, gc_heap: &impl GcHeap) -> Result<VMStructRef, VMGcRef> {
        if self.is_structref(gc_heap) {
            Ok(self.into_structref_unchecked())
        } else {
            Err(self)
        }
    }

    /// Create a new `VMStructRef` from `self` without actually checking that
    /// `self` is an `structref`.
    ///
    /// This method does not check that `self` is actually an `structref`, but
    /// it should be. Failure to uphold this invariant is memory safe but will
    /// result in general incorrectness down the line such as panics or wrong
    /// results.
    #[inline]
    pub fn into_structref_unchecked(self) -> VMStructRef {
        debug_assert!(!self.is_i31());
        VMStructRef(self)
    }

    /// Get this GC reference as an `structref` reference, if it actually is an
    /// `structref` reference.
    pub fn as_structref(&self, gc_heap: &(impl GcHeap + ?Sized)) -> Option<&VMStructRef> {
        if self.is_structref(gc_heap) {
            Some(self.as_structref_unchecked())
        } else {
            None
        }
    }

    /// Get this GC reference as an `structref` reference without checking if it
    /// actually is an `structref` reference.
    ///
    /// Calling this method on a non-`structref` reference is memory safe, but
    /// will lead to general incorrectness like panics and wrong results.
    pub fn as_structref_unchecked(&self) -> &VMStructRef {
        debug_assert!(!self.is_i31());
        let ptr = self as *const VMGcRef;
        let ret = unsafe { &*ptr.cast() };
        assert!(matches!(ret, VMStructRef(VMGcRef { .. })));
        ret
    }
}

impl VMStructRef {
    /// Get the underlying `VMGcRef`.
    pub fn as_gc_ref(&self) -> &VMGcRef {
        &self.0
    }

    /// Clone this `VMStructRef`, running any GC barriers as necessary.
    pub fn clone(&self, gc_store: &mut GcStore) -> Self {
        Self(gc_store.clone_gc_ref(&self.0))
    }

    /// Explicitly drop this `structref`, running GC drop barriers as necessary.
    pub fn drop(self, gc_store: &mut GcStore) {
        gc_store.drop_gc_ref(self.0);
    }

    /// Copy this `VMStructRef` without running the GC's clone barriers.
    ///
    /// Prefer calling `clone(&mut GcStore)` instead! This is mostly an internal
    /// escape hatch for collector implementations.
    ///
    /// Failure to run GC barriers when they would otherwise be necessary can
    /// lead to leaks, panics, and wrong results. It cannot lead to memory
    /// unsafety, however.
    pub fn unchecked_copy(&self) -> Self {
        Self(self.0.unchecked_copy())
    }

    /// Read a field of the given `StorageType` into a `Val`.
    ///
    /// `i8` and `i16` fields are zero-extended into `Val::I32(_)`s.
    ///
    /// Does not check that the field is actually of type `ty`. That is the
    /// caller's responsibility. Failure to do so is memory safe, but will lead
    /// to general incorrectness such as panics and wrong results.
    ///
    /// Panics on out-of-bounds accesses.
    pub fn read_field(
        &self,
        store: &mut AutoAssertNoGc,
        layout: &GcStructLayout,
        ty: &StorageType,
        field: usize,
    ) -> Val {
        let offset = layout.fields[field];
        let data = store.unwrap_gc_store_mut().gc_object_data(self.as_gc_ref());
        match ty {
            StorageType::I8 => Val::I32(data.read_u8(offset).into()),
            StorageType::I16 => Val::I32(data.read_u16(offset).into()),
            StorageType::ValType(ValType::I32) => Val::I32(data.read_i32(offset)),
            StorageType::ValType(ValType::I64) => Val::I64(data.read_i64(offset)),
            StorageType::ValType(ValType::F32) => Val::F32(data.read_u32(offset)),
            StorageType::ValType(ValType::F64) => Val::F64(data.read_u64(offset)),
            StorageType::ValType(ValType::V128) => Val::V128(data.read_v128(offset)),
            StorageType::ValType(ValType::Ref(r)) => match r.heap_type().top() {
                HeapType::Extern => {
                    let raw = data.read_u32(offset);
                    Val::ExternRef(ExternRef::_from_raw(store, raw))
                }
                HeapType::Any => {
                    let raw = data.read_u32(offset);
                    Val::AnyRef(AnyRef::_from_raw(store, raw))
                }
                HeapType::Func => {
                    let func_ref_id = data.read_u32(offset);
                    let func_ref_id = FuncRefTableId::from_raw(func_ref_id);
                    let func_ref = store
                        .unwrap_gc_store()
                        .func_ref_table
                        .get_untyped(func_ref_id);
                    Val::FuncRef(unsafe {
                        func_ref.map(|p| Func::from_vm_func_ref(store, p.as_non_null()))
                    })
                }
                otherwise => unreachable!("not a top type: {otherwise:?}"),
            },
        }
    }

    /// Write the given value into this struct at the given offset.
    ///
    /// Returns an error if `val` is a GC reference that has since been
    /// unrooted.
    ///
    /// Does not check that `val` matches `ty`, nor that the field is actually
    /// of type `ty`. Checking those things is the caller's responsibility.
    /// Failure to do so is memory safe, but will lead to general incorrectness
    /// such as panics and wrong results.
    ///
    /// Panics on out-of-bounds accesses.
    pub fn write_field(
        &self,
        store: &mut AutoAssertNoGc,
        layout: &GcStructLayout,
        ty: &StorageType,
        field: usize,
        val: Val,
    ) -> Result<()> {
        debug_assert!(val._matches_ty(&store, &ty.unpack())?);

        let offset = layout.fields[field];
        let mut data = store.gc_store_mut()?.gc_object_data(self.as_gc_ref());
        match val {
            Val::I32(i) if ty.is_i8() => data.write_i8(offset, truncate_i32_to_i8(i)),
            Val::I32(i) if ty.is_i16() => data.write_i16(offset, truncate_i32_to_i16(i)),
            Val::I32(i) => data.write_i32(offset, i),
            Val::I64(i) => data.write_i64(offset, i),
            Val::F32(f) => data.write_u32(offset, f),
            Val::F64(f) => data.write_u64(offset, f),
            Val::V128(v) => data.write_v128(offset, v),

            // For GC-managed references, we need to take care to run the
            // appropriate barriers, even when we are writing null references
            // into the struct.
            //
            // POD-read the old value into a local copy, run the GC write
            // barrier on that local copy, and then POD-write the updated
            // value back into the struct. This avoids transmuting the inner
            // data, which would probably be fine, but this approach is
            // Obviously Correct and should get us by for now. If LLVM isn't
            // able to elide some of these unnecessary copies, and this
            // method is ever hot enough, we can always come back and clean
            // it up in the future.
            Val::ExternRef(e) => {
                let raw = data.read_u32(offset);
                let mut gc_ref = VMGcRef::from_raw_u32(raw);
                let e = match e {
                    Some(e) => Some(e.try_gc_ref(store)?.unchecked_copy()),
                    None => None,
                };
                store.gc_store_mut()?.write_gc_ref(&mut gc_ref, e.as_ref());
                let mut data = store.gc_store_mut()?.gc_object_data(self.as_gc_ref());
                data.write_u32(offset, gc_ref.map_or(0, |r| r.as_raw_u32()));
            }
            Val::AnyRef(a) => {
                let raw = data.read_u32(offset);
                let mut gc_ref = VMGcRef::from_raw_u32(raw);
                let a = match a {
                    Some(a) => Some(a.try_gc_ref(store)?.unchecked_copy()),
                    None => None,
                };
                store.gc_store_mut()?.write_gc_ref(&mut gc_ref, a.as_ref());
                let mut data = store.gc_store_mut()?.gc_object_data(self.as_gc_ref());
                data.write_u32(offset, gc_ref.map_or(0, |r| r.as_raw_u32()));
            }

            Val::FuncRef(f) => {
                let f = f.map(|f| SendSyncPtr::new(f.vm_func_ref(store)));
                let id = unsafe { store.gc_store_mut()?.func_ref_table.intern(f) };
                store
                    .gc_store_mut()?
                    .gc_object_data(self.as_gc_ref())
                    .write_u32(offset, id.into_raw());
            }
        }
        Ok(())
    }

    /// Initialize a field in this structref that is currently uninitialized.
    ///
    /// The difference between this method and `write_field` is that GC barriers
    /// are handled differently. When overwriting an initialized field (aka
    /// `write_field`) we need to call the full write GC write barrier, which
    /// logically drops the old GC reference and clones the new GC
    /// reference. When we are initializing a field for the first time, there is
    /// no old GC reference that is being overwritten and which we need to drop,
    /// so we only need to clone the new GC reference.
    ///
    /// Calling this method on a structref that has already had the associated
    /// field initialized will result in GC bugs. These are memory safe but will
    /// lead to generally incorrect behavior such as panics, leaks, and
    /// incorrect results.
    ///
    /// Does not check that `val` matches `ty`, nor that the field is actually
    /// of type `ty`. Checking those things is the caller's responsibility.
    /// Failure to do so is memory safe, but will lead to general incorrectness
    /// such as panics and wrong results.
    ///
    /// Returns an error if `val` is a GC reference that has since been
    /// unrooted.
    ///
    /// Panics on out-of-bounds accesses.
    pub fn initialize_field(
        &self,
        store: &mut AutoAssertNoGc,
        layout: &GcStructLayout,
        ty: &StorageType,
        field: usize,
        val: Val,
    ) -> Result<()> {
        debug_assert!(val._matches_ty(&store, &ty.unpack())?);
        let offset = layout.fields[field];
        match val {
            Val::I32(i) if ty.is_i8() => store
                .gc_store_mut()?
                .gc_object_data(self.as_gc_ref())
                .write_i8(offset, truncate_i32_to_i8(i)),
            Val::I32(i) if ty.is_i16() => store
                .gc_store_mut()?
                .gc_object_data(self.as_gc_ref())
                .write_i16(offset, truncate_i32_to_i16(i)),
            Val::I32(i) => store
                .gc_store_mut()?
                .gc_object_data(self.as_gc_ref())
                .write_i32(offset, i),
            Val::I64(i) => store
                .gc_store_mut()?
                .gc_object_data(self.as_gc_ref())
                .write_i64(offset, i),
            Val::F32(f) => store
                .gc_store_mut()?
                .gc_object_data(self.as_gc_ref())
                .write_u32(offset, f),
            Val::F64(f) => store
                .gc_store_mut()?
                .gc_object_data(self.as_gc_ref())
                .write_u64(offset, f),
            Val::V128(v) => store
                .gc_store_mut()?
                .gc_object_data(self.as_gc_ref())
                .write_v128(offset, v),

            // NB: We don't need to do a write barrier when initializing a
            // field, because there is nothing being overwritten. Therefore, we
            // just the clone barrier.
            Val::ExternRef(x) => {
                let x = match x {
                    None => 0,
                    Some(x) => x.try_clone_gc_ref(store)?.as_raw_u32(),
                };
                store
                    .gc_store_mut()?
                    .gc_object_data(self.as_gc_ref())
                    .write_u32(offset, x);
            }
            Val::AnyRef(x) => {
                let x = match x {
                    None => 0,
                    Some(x) => x.try_clone_gc_ref(store)?.as_raw_u32(),
                };
                store
                    .gc_store_mut()?
                    .gc_object_data(self.as_gc_ref())
                    .write_u32(offset, x);
            }

            Val::FuncRef(f) => {
                let f = f.map(|f| SendSyncPtr::new(f.vm_func_ref(store)));
                let id = unsafe { store.gc_store_mut()?.func_ref_table.intern(f) };
                store
                    .gc_store_mut()?
                    .gc_object_data(self.as_gc_ref())
                    .write_u32(offset, id.into_raw());
            }
        }
        Ok(())
    }
}