wasmtime/runtime/vm/gc/enabled/structref.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
use super::{truncate_i32_to_i16, truncate_i32_to_i8};
use crate::{
prelude::*,
runtime::vm::{GcHeap, GcStore, VMGcRef},
store::AutoAssertNoGc,
vm::{FuncRefTableId, SendSyncPtr},
AnyRef, ExternRef, Func, HeapType, RootedGcRefImpl, StorageType, Val, ValType,
};
use core::fmt;
use wasmtime_environ::{GcStructLayout, VMGcKind};
/// A `VMGcRef` that we know points to a `struct`.
///
/// Create a `VMStructRef` via `VMGcRef::into_structref` and
/// `VMGcRef::as_structref`, or their untyped equivalents
/// `VMGcRef::into_structref_unchecked` and `VMGcRef::as_structref_unchecked`.
///
/// Note: This is not a `TypedGcRef<_>` because each collector can have a
/// different concrete representation of `structref` that they allocate inside
/// their heaps.
#[derive(Debug, PartialEq, Eq, Hash)]
#[repr(transparent)]
pub struct VMStructRef(VMGcRef);
impl fmt::Pointer for VMStructRef {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Pointer::fmt(&self.0, f)
}
}
impl From<VMStructRef> for VMGcRef {
#[inline]
fn from(x: VMStructRef) -> Self {
x.0
}
}
impl VMGcRef {
/// Is this `VMGcRef` pointing to a `struct`?
pub fn is_structref(&self, gc_heap: &(impl GcHeap + ?Sized)) -> bool {
if self.is_i31() {
return false;
}
let header = gc_heap.header(&self);
header.kind().matches(VMGcKind::StructRef)
}
/// Create a new `VMStructRef` from the given `gc_ref`.
///
/// If this is not a GC reference to an `structref`, `Err(self)` is
/// returned.
pub fn into_structref(self, gc_heap: &impl GcHeap) -> Result<VMStructRef, VMGcRef> {
if self.is_structref(gc_heap) {
Ok(self.into_structref_unchecked())
} else {
Err(self)
}
}
/// Create a new `VMStructRef` from `self` without actually checking that
/// `self` is an `structref`.
///
/// This method does not check that `self` is actually an `structref`, but
/// it should be. Failure to uphold this invariant is memory safe but will
/// result in general incorrectness down the line such as panics or wrong
/// results.
#[inline]
pub fn into_structref_unchecked(self) -> VMStructRef {
debug_assert!(!self.is_i31());
VMStructRef(self)
}
/// Get this GC reference as an `structref` reference, if it actually is an
/// `structref` reference.
pub fn as_structref(&self, gc_heap: &(impl GcHeap + ?Sized)) -> Option<&VMStructRef> {
if self.is_structref(gc_heap) {
Some(self.as_structref_unchecked())
} else {
None
}
}
/// Get this GC reference as an `structref` reference without checking if it
/// actually is an `structref` reference.
///
/// Calling this method on a non-`structref` reference is memory safe, but
/// will lead to general incorrectness like panics and wrong results.
pub fn as_structref_unchecked(&self) -> &VMStructRef {
debug_assert!(!self.is_i31());
let ptr = self as *const VMGcRef;
let ret = unsafe { &*ptr.cast() };
assert!(matches!(ret, VMStructRef(VMGcRef { .. })));
ret
}
}
impl VMStructRef {
/// Get the underlying `VMGcRef`.
pub fn as_gc_ref(&self) -> &VMGcRef {
&self.0
}
/// Clone this `VMStructRef`, running any GC barriers as necessary.
pub fn clone(&self, gc_store: &mut GcStore) -> Self {
Self(gc_store.clone_gc_ref(&self.0))
}
/// Explicitly drop this `structref`, running GC drop barriers as necessary.
pub fn drop(self, gc_store: &mut GcStore) {
gc_store.drop_gc_ref(self.0);
}
/// Copy this `VMStructRef` without running the GC's clone barriers.
///
/// Prefer calling `clone(&mut GcStore)` instead! This is mostly an internal
/// escape hatch for collector implementations.
///
/// Failure to run GC barriers when they would otherwise be necessary can
/// lead to leaks, panics, and wrong results. It cannot lead to memory
/// unsafety, however.
pub fn unchecked_copy(&self) -> Self {
Self(self.0.unchecked_copy())
}
/// Read a field of the given `StorageType` into a `Val`.
///
/// `i8` and `i16` fields are zero-extended into `Val::I32(_)`s.
///
/// Does not check that the field is actually of type `ty`. That is the
/// caller's responsibility. Failure to do so is memory safe, but will lead
/// to general incorrectness such as panics and wrong results.
///
/// Panics on out-of-bounds accesses.
pub fn read_field(
&self,
store: &mut AutoAssertNoGc,
layout: &GcStructLayout,
ty: &StorageType,
field: usize,
) -> Val {
let offset = layout.fields[field];
let data = store.unwrap_gc_store_mut().gc_object_data(self.as_gc_ref());
match ty {
StorageType::I8 => Val::I32(data.read_u8(offset).into()),
StorageType::I16 => Val::I32(data.read_u16(offset).into()),
StorageType::ValType(ValType::I32) => Val::I32(data.read_i32(offset)),
StorageType::ValType(ValType::I64) => Val::I64(data.read_i64(offset)),
StorageType::ValType(ValType::F32) => Val::F32(data.read_u32(offset)),
StorageType::ValType(ValType::F64) => Val::F64(data.read_u64(offset)),
StorageType::ValType(ValType::V128) => Val::V128(data.read_v128(offset)),
StorageType::ValType(ValType::Ref(r)) => match r.heap_type().top() {
HeapType::Extern => {
let raw = data.read_u32(offset);
Val::ExternRef(ExternRef::_from_raw(store, raw))
}
HeapType::Any => {
let raw = data.read_u32(offset);
Val::AnyRef(AnyRef::_from_raw(store, raw))
}
HeapType::Func => {
let func_ref_id = data.read_u32(offset);
let func_ref_id = FuncRefTableId::from_raw(func_ref_id);
let func_ref = store
.unwrap_gc_store()
.func_ref_table
.get_untyped(func_ref_id);
Val::FuncRef(unsafe {
func_ref.map(|p| Func::from_vm_func_ref(store, p.as_non_null()))
})
}
otherwise => unreachable!("not a top type: {otherwise:?}"),
},
}
}
/// Write the given value into this struct at the given offset.
///
/// Returns an error if `val` is a GC reference that has since been
/// unrooted.
///
/// Does not check that `val` matches `ty`, nor that the field is actually
/// of type `ty`. Checking those things is the caller's responsibility.
/// Failure to do so is memory safe, but will lead to general incorrectness
/// such as panics and wrong results.
///
/// Panics on out-of-bounds accesses.
pub fn write_field(
&self,
store: &mut AutoAssertNoGc,
layout: &GcStructLayout,
ty: &StorageType,
field: usize,
val: Val,
) -> Result<()> {
debug_assert!(val._matches_ty(&store, &ty.unpack())?);
let offset = layout.fields[field];
let mut data = store.gc_store_mut()?.gc_object_data(self.as_gc_ref());
match val {
Val::I32(i) if ty.is_i8() => data.write_i8(offset, truncate_i32_to_i8(i)),
Val::I32(i) if ty.is_i16() => data.write_i16(offset, truncate_i32_to_i16(i)),
Val::I32(i) => data.write_i32(offset, i),
Val::I64(i) => data.write_i64(offset, i),
Val::F32(f) => data.write_u32(offset, f),
Val::F64(f) => data.write_u64(offset, f),
Val::V128(v) => data.write_v128(offset, v),
// For GC-managed references, we need to take care to run the
// appropriate barriers, even when we are writing null references
// into the struct.
//
// POD-read the old value into a local copy, run the GC write
// barrier on that local copy, and then POD-write the updated
// value back into the struct. This avoids transmuting the inner
// data, which would probably be fine, but this approach is
// Obviously Correct and should get us by for now. If LLVM isn't
// able to elide some of these unnecessary copies, and this
// method is ever hot enough, we can always come back and clean
// it up in the future.
Val::ExternRef(e) => {
let raw = data.read_u32(offset);
let mut gc_ref = VMGcRef::from_raw_u32(raw);
let e = match e {
Some(e) => Some(e.try_gc_ref(store)?.unchecked_copy()),
None => None,
};
store.gc_store_mut()?.write_gc_ref(&mut gc_ref, e.as_ref());
let mut data = store.gc_store_mut()?.gc_object_data(self.as_gc_ref());
data.write_u32(offset, gc_ref.map_or(0, |r| r.as_raw_u32()));
}
Val::AnyRef(a) => {
let raw = data.read_u32(offset);
let mut gc_ref = VMGcRef::from_raw_u32(raw);
let a = match a {
Some(a) => Some(a.try_gc_ref(store)?.unchecked_copy()),
None => None,
};
store.gc_store_mut()?.write_gc_ref(&mut gc_ref, a.as_ref());
let mut data = store.gc_store_mut()?.gc_object_data(self.as_gc_ref());
data.write_u32(offset, gc_ref.map_or(0, |r| r.as_raw_u32()));
}
Val::FuncRef(f) => {
let f = f.map(|f| SendSyncPtr::new(f.vm_func_ref(store)));
let id = unsafe { store.gc_store_mut()?.func_ref_table.intern(f) };
store
.gc_store_mut()?
.gc_object_data(self.as_gc_ref())
.write_u32(offset, id.into_raw());
}
}
Ok(())
}
/// Initialize a field in this structref that is currently uninitialized.
///
/// The difference between this method and `write_field` is that GC barriers
/// are handled differently. When overwriting an initialized field (aka
/// `write_field`) we need to call the full write GC write barrier, which
/// logically drops the old GC reference and clones the new GC
/// reference. When we are initializing a field for the first time, there is
/// no old GC reference that is being overwritten and which we need to drop,
/// so we only need to clone the new GC reference.
///
/// Calling this method on a structref that has already had the associated
/// field initialized will result in GC bugs. These are memory safe but will
/// lead to generally incorrect behavior such as panics, leaks, and
/// incorrect results.
///
/// Does not check that `val` matches `ty`, nor that the field is actually
/// of type `ty`. Checking those things is the caller's responsibility.
/// Failure to do so is memory safe, but will lead to general incorrectness
/// such as panics and wrong results.
///
/// Returns an error if `val` is a GC reference that has since been
/// unrooted.
///
/// Panics on out-of-bounds accesses.
pub fn initialize_field(
&self,
store: &mut AutoAssertNoGc,
layout: &GcStructLayout,
ty: &StorageType,
field: usize,
val: Val,
) -> Result<()> {
debug_assert!(val._matches_ty(&store, &ty.unpack())?);
let offset = layout.fields[field];
match val {
Val::I32(i) if ty.is_i8() => store
.gc_store_mut()?
.gc_object_data(self.as_gc_ref())
.write_i8(offset, truncate_i32_to_i8(i)),
Val::I32(i) if ty.is_i16() => store
.gc_store_mut()?
.gc_object_data(self.as_gc_ref())
.write_i16(offset, truncate_i32_to_i16(i)),
Val::I32(i) => store
.gc_store_mut()?
.gc_object_data(self.as_gc_ref())
.write_i32(offset, i),
Val::I64(i) => store
.gc_store_mut()?
.gc_object_data(self.as_gc_ref())
.write_i64(offset, i),
Val::F32(f) => store
.gc_store_mut()?
.gc_object_data(self.as_gc_ref())
.write_u32(offset, f),
Val::F64(f) => store
.gc_store_mut()?
.gc_object_data(self.as_gc_ref())
.write_u64(offset, f),
Val::V128(v) => store
.gc_store_mut()?
.gc_object_data(self.as_gc_ref())
.write_v128(offset, v),
// NB: We don't need to do a write barrier when initializing a
// field, because there is nothing being overwritten. Therefore, we
// just the clone barrier.
Val::ExternRef(x) => {
let x = match x {
None => 0,
Some(x) => x.try_clone_gc_ref(store)?.as_raw_u32(),
};
store
.gc_store_mut()?
.gc_object_data(self.as_gc_ref())
.write_u32(offset, x);
}
Val::AnyRef(x) => {
let x = match x {
None => 0,
Some(x) => x.try_clone_gc_ref(store)?.as_raw_u32(),
};
store
.gc_store_mut()?
.gc_object_data(self.as_gc_ref())
.write_u32(offset, x);
}
Val::FuncRef(f) => {
let f = f.map(|f| SendSyncPtr::new(f.vm_func_ref(store)));
let id = unsafe { store.gc_store_mut()?.func_ref_table.intern(f) };
store
.gc_store_mut()?
.gc_object_data(self.as_gc_ref())
.write_u32(offset, id.into_raw());
}
}
Ok(())
}
}