wasmtime/runtime/vm/
libcalls.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
//! Runtime library calls.
//!
//! Note that Wasm compilers may sometimes perform these inline rather than
//! calling them, particularly when CPUs have special instructions which compute
//! them directly.
//!
//! These functions are called by compiled Wasm code, and therefore must take
//! certain care about some things:
//!
//! * They must only contain basic, raw i32/i64/f32/f64/pointer parameters that
//!   are safe to pass across the system ABI.
//!
//! * If any nested function propagates an `Err(trap)` out to the library
//!   function frame, we need to raise it. This involves some nasty and quite
//!   unsafe code under the covers! Notably, after raising the trap, drops
//!   **will not** be run for local variables! This can lead to things like
//!   leaking `InstanceHandle`s which leads to never deallocating JIT code,
//!   instances, and modules if we are not careful!
//!
//! * The libcall must be entered via a Wasm-to-libcall trampoline that saves
//!   the last Wasm FP and PC for stack walking purposes. (For more details, see
//!   `crates/wasmtime/src/runtime/vm/backtrace.rs`.)
//!
//! To make it easier to correctly handle all these things, **all** libcalls
//! must be defined via the `libcall!` helper macro! See its doc comments below
//! for an example, or just look at the rest of the file.
//!
//! ## Dealing with `externref`s
//!
//! When receiving a raw `*mut u8` that is actually a `VMExternRef` reference,
//! convert it into a proper `VMExternRef` with `VMExternRef::clone_from_raw` as
//! soon as apossible. Any GC before raw pointer is converted into a reference
//! can potentially collect the referenced object, which could lead to use after
//! free.
//!
//! Avoid this by eagerly converting into a proper `VMExternRef`! (Unfortunately
//! there is no macro to help us automatically get this correct, so stay
//! vigilant!)
//!
//! ```ignore
//! pub unsafe extern "C" my_libcall_takes_ref(raw_extern_ref: *mut u8) {
//!     // Before `clone_from_raw`, `raw_extern_ref` is potentially unrooted,
//!     // and doing GC here could lead to use after free!
//!
//!     let my_extern_ref = if raw_extern_ref.is_null() {
//!         None
//!     } else {
//!         Some(VMExternRef::clone_from_raw(raw_extern_ref))
//!     };
//!
//!     // Now that we did `clone_from_raw`, it is safe to do a GC (or do
//!     // anything else that might transitively GC, like call back into
//!     // Wasm!)
//! }
//! ```

use crate::prelude::*;
use crate::runtime::vm::table::{Table, TableElementType};
use crate::runtime::vm::vmcontext::VMFuncRef;
#[cfg(feature = "gc")]
use crate::runtime::vm::VMGcRef;
use crate::runtime::vm::{HostResultHasUnwindSentinel, Instance, TrapReason, VMStore};
use core::convert::Infallible;
use core::ptr::NonNull;
#[cfg(feature = "threads")]
use core::time::Duration;
use wasmtime_environ::{DataIndex, ElemIndex, FuncIndex, MemoryIndex, TableIndex, Trap};
#[cfg(feature = "wmemcheck")]
use wasmtime_wmemcheck::AccessError::{
    DoubleMalloc, InvalidFree, InvalidRead, InvalidWrite, OutOfBounds,
};

/// Raw functions which are actually called from compiled code.
///
/// Invocation of a builtin currently looks like:
///
/// * A wasm function calls a cranelift-compiled trampoline that's generated
///   once-per-builtin.
/// * The cranelift-compiled trampoline performs any necessary actions to exit
///   wasm, such as dealing with fp/pc/etc.
/// * The cranelift-compiled trampoline loads a function pointer from an array
///   stored in `VMContext` That function pointer is defined in this module.
/// * This module runs, handling things like `catch_unwind` and `Result` and
///   such.
/// * This module delegates to the outer module (this file) which has the actual
///   implementation.
///
/// For more information on converting from host-defined values to Cranelift ABI
/// values see the `catch_unwind_and_record_trap` function.
pub mod raw {
    // Allow these things because of the macro and how we can't differentiate
    // between doc comments and `cfg`s.
    #![allow(unused_doc_comments, unused_attributes)]

    use crate::runtime::vm::{InstanceAndStore, VMContext};
    use core::ptr::NonNull;

    macro_rules! libcall {
        (
            $(
                $( #[cfg($attr:meta)] )?
                $name:ident( vmctx: vmctx $(, $pname:ident: $param:ident )* ) $(-> $result:ident)?;
            )*
        ) => {
            $(
                // This is the direct entrypoint from the compiled module which
                // still has the raw signature.
                //
                // This will delegate to the outer module to the actual
                // implementation and automatically perform `catch_unwind` along
                // with conversion of the return value in the face of traps.
                #[allow(unused_variables, missing_docs)]
                pub unsafe extern "C" fn $name(
                    vmctx: NonNull<VMContext>,
                    $( $pname : libcall!(@ty $param), )*
                ) $(-> libcall!(@ty $result))? {
                    $(#[cfg($attr)])?
                    {
                        crate::runtime::vm::traphandlers::catch_unwind_and_record_trap(|| {
                            InstanceAndStore::from_vmctx(vmctx, |pair| {
                                let (instance, store) = pair.unpack_mut();
                                super::$name(store, instance, $($pname),*)
                            })
                        })
                    }
                    $(
                        #[cfg(not($attr))]
                        unreachable!();
                    )?
                }

                // This works around a `rustc` bug where compiling with LTO
                // will sometimes strip out some of these symbols resulting
                // in a linking failure.
                #[allow(non_upper_case_globals)]
                const _: () = {
                    #[used]
                    static I_AM_USED: unsafe extern "C" fn(
                        NonNull<VMContext>,
                        $( $pname : libcall!(@ty $param), )*
                    ) $( -> libcall!(@ty $result))? = $name;
                };
            )*
        };

        (@ty u32) => (u32);
        (@ty u64) => (u64);
        (@ty u8) => (u8);
        (@ty bool) => (bool);
        (@ty pointer) => (*mut u8);
    }

    wasmtime_environ::foreach_builtin_function!(libcall);
}

fn memory32_grow(
    store: &mut dyn VMStore,
    instance: &mut Instance,
    delta: u64,
    memory_index: u32,
) -> Result<Option<AllocationSize>, TrapReason> {
    let memory_index = MemoryIndex::from_u32(memory_index);
    let result = instance
        .memory_grow(store, memory_index, delta)?
        .map(|size_in_bytes| {
            AllocationSize(size_in_bytes / instance.memory_page_size(memory_index))
        });

    Ok(result)
}

/// A helper structure to represent the return value of a memory or table growth
/// call.
///
/// This represents a byte or element-based count of the size of an item on the
/// host. For example a memory is how many bytes large the memory is, or a table
/// is how many elements large it is. It's assumed that the value here is never
/// -1 or -2 as that would mean the entire host address space is allocated which
/// is not possible.
struct AllocationSize(usize);

/// Special implementation for growth-related libcalls.
///
/// Here the optional return value means:
///
/// * `Some(val)` - the growth succeeded and the previous size of the item was
///   `val`.
/// * `None` - the growth failed.
///
/// The failure case returns -1 (or `usize::MAX` as an unsigned integer) and the
/// successful case returns the `val` itself. Note that -2 (`usize::MAX - 1`
/// when unsigned) is unwind as a sentinel to indicate an unwind as no valid
/// allocation can be that large.
unsafe impl HostResultHasUnwindSentinel for Option<AllocationSize> {
    type Abi = *mut u8;
    const SENTINEL: *mut u8 = (usize::MAX - 1) as *mut u8;

    fn into_abi(self) -> *mut u8 {
        match self {
            Some(size) => {
                debug_assert!(size.0 < (usize::MAX - 1));
                size.0 as *mut u8
            }
            None => usize::MAX as *mut u8,
        }
    }
}

/// Implementation of `table.grow` for `funcref` tables.
unsafe fn table_grow_func_ref(
    store: &mut dyn VMStore,
    instance: &mut Instance,
    table_index: u32,
    delta: u64,
    init_value: *mut u8,
) -> Result<Option<AllocationSize>> {
    let table_index = TableIndex::from_u32(table_index);

    let element = match instance.table_element_type(table_index) {
        TableElementType::Func => NonNull::new(init_value.cast::<VMFuncRef>()).into(),
        TableElementType::GcRef => unreachable!(),
    };

    let result = instance
        .table_grow(store, table_index, delta, element)?
        .map(AllocationSize);
    Ok(result)
}

/// Implementation of `table.grow` for GC-reference tables.
#[cfg(feature = "gc")]
unsafe fn table_grow_gc_ref(
    store: &mut dyn VMStore,
    instance: &mut Instance,
    table_index: u32,
    delta: u64,
    init_value: u32,
) -> Result<Option<AllocationSize>> {
    let table_index = TableIndex::from_u32(table_index);

    let element = match instance.table_element_type(table_index) {
        TableElementType::Func => unreachable!(),
        TableElementType::GcRef => VMGcRef::from_raw_u32(init_value)
            .map(|r| {
                store
                    .store_opaque_mut()
                    .unwrap_gc_store_mut()
                    .clone_gc_ref(&r)
            })
            .into(),
    };

    let result = instance
        .table_grow(store, table_index, delta, element)?
        .map(AllocationSize);
    Ok(result)
}

/// Implementation of `table.fill` for `funcref`s.
unsafe fn table_fill_func_ref(
    store: &mut dyn VMStore,
    instance: &mut Instance,
    table_index: u32,
    dst: u64,
    val: *mut u8,
    len: u64,
) -> Result<()> {
    let table_index = TableIndex::from_u32(table_index);
    let table = &mut *instance.get_table(table_index);
    match table.element_type() {
        TableElementType::Func => {
            let val = NonNull::new(val.cast::<VMFuncRef>());
            table.fill(store.optional_gc_store_mut()?, dst, val.into(), len)?;
            Ok(())
        }
        TableElementType::GcRef => unreachable!(),
    }
}

#[cfg(feature = "gc")]
unsafe fn table_fill_gc_ref(
    store: &mut dyn VMStore,
    instance: &mut Instance,
    table_index: u32,
    dst: u64,
    val: u32,
    len: u64,
) -> Result<()> {
    let table_index = TableIndex::from_u32(table_index);
    let table = &mut *instance.get_table(table_index);
    match table.element_type() {
        TableElementType::Func => unreachable!(),
        TableElementType::GcRef => {
            let gc_store = store.store_opaque_mut().unwrap_gc_store_mut();
            let gc_ref = VMGcRef::from_raw_u32(val);
            let gc_ref = gc_ref.map(|r| gc_store.clone_gc_ref(&r));
            table.fill(Some(gc_store), dst, gc_ref.into(), len)?;
            Ok(())
        }
    }
}

// Implementation of `table.copy`.
unsafe fn table_copy(
    store: &mut dyn VMStore,
    instance: &mut Instance,
    dst_table_index: u32,
    src_table_index: u32,
    dst: u64,
    src: u64,
    len: u64,
) -> Result<()> {
    let dst_table_index = TableIndex::from_u32(dst_table_index);
    let src_table_index = TableIndex::from_u32(src_table_index);
    let store = store.store_opaque_mut();
    let dst_table = instance.get_table(dst_table_index);
    // Lazy-initialize the whole range in the source table first.
    let src_range = src..(src.checked_add(len).unwrap_or(u64::MAX));
    let src_table = instance.get_table_with_lazy_init(src_table_index, src_range);
    let gc_store = store.optional_gc_store_mut()?;
    Table::copy(gc_store, dst_table, src_table, dst, src, len)?;
    Ok(())
}

// Implementation of `table.init`.
fn table_init(
    store: &mut dyn VMStore,
    instance: &mut Instance,
    table_index: u32,
    elem_index: u32,
    dst: u64,
    src: u64,
    len: u64,
) -> Result<(), Trap> {
    let table_index = TableIndex::from_u32(table_index);
    let elem_index = ElemIndex::from_u32(elem_index);
    instance.table_init(
        store.store_opaque_mut(),
        table_index,
        elem_index,
        dst,
        src,
        len,
    )
}

// Implementation of `elem.drop`.
fn elem_drop(_store: &mut dyn VMStore, instance: &mut Instance, elem_index: u32) {
    let elem_index = ElemIndex::from_u32(elem_index);
    instance.elem_drop(elem_index)
}

// Implementation of `memory.copy`.
fn memory_copy(
    _store: &mut dyn VMStore,
    instance: &mut Instance,
    dst_index: u32,
    dst: u64,
    src_index: u32,
    src: u64,
    len: u64,
) -> Result<(), Trap> {
    let src_index = MemoryIndex::from_u32(src_index);
    let dst_index = MemoryIndex::from_u32(dst_index);
    instance.memory_copy(dst_index, dst, src_index, src, len)
}

// Implementation of `memory.fill` for locally defined memories.
fn memory_fill(
    _store: &mut dyn VMStore,
    instance: &mut Instance,
    memory_index: u32,
    dst: u64,
    val: u32,
    len: u64,
) -> Result<(), Trap> {
    let memory_index = MemoryIndex::from_u32(memory_index);
    #[allow(clippy::cast_possible_truncation)]
    instance.memory_fill(memory_index, dst, val as u8, len)
}

// Implementation of `memory.init`.
fn memory_init(
    _store: &mut dyn VMStore,
    instance: &mut Instance,
    memory_index: u32,
    data_index: u32,
    dst: u64,
    src: u32,
    len: u32,
) -> Result<(), Trap> {
    let memory_index = MemoryIndex::from_u32(memory_index);
    let data_index = DataIndex::from_u32(data_index);
    instance.memory_init(memory_index, data_index, dst, src, len)
}

// Implementation of `ref.func`.
fn ref_func(_store: &mut dyn VMStore, instance: &mut Instance, func_index: u32) -> NonNull<u8> {
    instance
        .get_func_ref(FuncIndex::from_u32(func_index))
        .expect("ref_func: funcref should always be available for given func index")
        .cast()
}

// Implementation of `data.drop`.
fn data_drop(_store: &mut dyn VMStore, instance: &mut Instance, data_index: u32) {
    let data_index = DataIndex::from_u32(data_index);
    instance.data_drop(data_index)
}

// Returns a table entry after lazily initializing it.
unsafe fn table_get_lazy_init_func_ref(
    _store: &mut dyn VMStore,
    instance: &mut Instance,
    table_index: u32,
    index: u64,
) -> *mut u8 {
    let table_index = TableIndex::from_u32(table_index);
    let table = instance.get_table_with_lazy_init(table_index, core::iter::once(index));
    let elem = (*table)
        .get(None, index)
        .expect("table access already bounds-checked");

    match elem.into_func_ref_asserting_initialized() {
        Some(ptr) => ptr.as_ptr().cast(),
        None => core::ptr::null_mut(),
    }
}

/// Drop a GC reference.
#[cfg(feature = "gc-drc")]
unsafe fn drop_gc_ref(store: &mut dyn VMStore, _instance: &mut Instance, gc_ref: u32) {
    log::trace!("libcalls::drop_gc_ref({gc_ref:#x})");
    let gc_ref = VMGcRef::from_raw_u32(gc_ref).expect("non-null VMGcRef");
    store
        .store_opaque_mut()
        .unwrap_gc_store_mut()
        .drop_gc_ref(gc_ref);
}

/// Do a GC, keeping `gc_ref` rooted and returning the updated `gc_ref`
/// reference.
#[cfg(feature = "gc-drc")]
unsafe fn gc(store: &mut dyn VMStore, _instance: &mut Instance, gc_ref: u32) -> Result<u32> {
    let gc_ref = VMGcRef::from_raw_u32(gc_ref);
    let gc_ref = gc_ref.map(|r| {
        store
            .store_opaque_mut()
            .unwrap_gc_store_mut()
            .clone_gc_ref(&r)
    });

    if let Some(gc_ref) = &gc_ref {
        // It is possible that we are GC'ing because the DRC's activation
        // table's bump region is full, and we failed to insert `gc_ref` into
        // the bump region. But it is an invariant for DRC collection that all
        // GC references on the stack are in the DRC's activations table at the
        // time of a GC. So make sure to "expose" this GC reference to Wasm (aka
        // insert it into the DRC's activation table) before we do the actual
        // GC.
        let gc_store = store.store_opaque_mut().unwrap_gc_store_mut();
        let gc_ref = gc_store.clone_gc_ref(gc_ref);
        gc_store.expose_gc_ref_to_wasm(gc_ref);
    }

    match store.maybe_async_gc(gc_ref)? {
        None => Ok(0),
        Some(r) => {
            let raw = r.as_raw_u32();
            store
                .store_opaque_mut()
                .unwrap_gc_store_mut()
                .expose_gc_ref_to_wasm(r);
            Ok(raw)
        }
    }
}

/// Allocate a raw, unininitialized GC object for Wasm code.
///
/// The Wasm code is responsible for initializing the object.
#[cfg(feature = "gc-drc")]
unsafe fn gc_alloc_raw(
    store: &mut dyn VMStore,
    instance: &mut Instance,
    kind: u32,
    module_interned_type_index: u32,
    size: u32,
    align: u32,
) -> Result<u32> {
    use crate::{vm::VMGcHeader, GcHeapOutOfMemory};
    use core::alloc::Layout;
    use wasmtime_environ::{ModuleInternedTypeIndex, VMGcKind};

    let kind = VMGcKind::from_high_bits_of_u32(kind);
    log::trace!("gc_alloc_raw(kind={kind:?}, size={size}, align={align})",);

    let module = instance
        .runtime_module()
        .expect("should never allocate GC types defined in a dummy module");

    let module_interned_type_index = ModuleInternedTypeIndex::from_u32(module_interned_type_index);
    let shared_type_index = module
        .signatures()
        .shared_type(module_interned_type_index)
        .expect("should have engine type index for module type index");

    let header = VMGcHeader::from_kind_and_index(kind, shared_type_index);

    let size = usize::try_from(size).unwrap();
    let align = usize::try_from(align).unwrap();
    let layout = Layout::from_size_align(size, align).unwrap();

    let gc_ref = match store
        .store_opaque_mut()
        .unwrap_gc_store_mut()
        .alloc_raw(header, layout)?
    {
        Some(r) => r,
        None => {
            // If the allocation failed, do a GC to hopefully clean up space.
            store.maybe_async_gc(None)?;

            // And then try again.
            store
                .unwrap_gc_store_mut()
                .alloc_raw(header, layout)?
                .ok_or_else(|| GcHeapOutOfMemory::new(()))?
        }
    };

    let raw = gc_ref.as_raw_u32();

    store
        .store_opaque_mut()
        .unwrap_gc_store_mut()
        .expose_gc_ref_to_wasm(gc_ref);

    Ok(raw)
}

// Intern a `funcref` into the GC heap, returning its `FuncRefTableId`.
//
// This libcall may not GC.
#[cfg(feature = "gc")]
unsafe fn intern_func_ref_for_gc_heap(
    store: &mut dyn VMStore,
    _instance: &mut Instance,
    func_ref: *mut u8,
) -> Result<u32> {
    use crate::{store::AutoAssertNoGc, vm::SendSyncPtr};
    use core::ptr::NonNull;

    let mut store = AutoAssertNoGc::new(store.store_opaque_mut());

    let func_ref = func_ref.cast::<VMFuncRef>();
    let func_ref = NonNull::new(func_ref).map(SendSyncPtr::new);

    let func_ref_id = store.gc_store_mut()?.func_ref_table.intern(func_ref);
    Ok(func_ref_id.into_raw())
}

// Get the raw `VMFuncRef` pointer associated with a `FuncRefTableId` from an
// earlier `intern_func_ref_for_gc_heap` call.
//
// This libcall may not GC.
#[cfg(feature = "gc")]
unsafe fn get_interned_func_ref(
    store: &mut dyn VMStore,
    instance: &mut Instance,
    func_ref_id: u32,
    module_interned_type_index: u32,
) -> *mut u8 {
    use super::FuncRefTableId;
    use crate::store::AutoAssertNoGc;
    use wasmtime_environ::{packed_option::ReservedValue, ModuleInternedTypeIndex};

    let store = AutoAssertNoGc::new(store.store_opaque_mut());

    let func_ref_id = FuncRefTableId::from_raw(func_ref_id);
    let module_interned_type_index = ModuleInternedTypeIndex::from_bits(module_interned_type_index);

    let func_ref = if module_interned_type_index.is_reserved_value() {
        store
            .unwrap_gc_store()
            .func_ref_table
            .get_untyped(func_ref_id)
    } else {
        let types = store.engine().signatures();
        let engine_ty = instance.engine_type_index(module_interned_type_index);
        store
            .unwrap_gc_store()
            .func_ref_table
            .get_typed(types, func_ref_id, engine_ty)
    };

    func_ref.map_or(core::ptr::null_mut(), |f| f.as_ptr().cast())
}

/// Implementation of the `array.new_data` instruction.
#[cfg(feature = "gc")]
unsafe fn array_new_data(
    store: &mut dyn VMStore,
    instance: &mut Instance,
    array_type_index: u32,
    data_index: u32,
    src: u32,
    len: u32,
) -> Result<u32> {
    use crate::{ArrayType, GcHeapOutOfMemory};
    use wasmtime_environ::ModuleInternedTypeIndex;

    let array_type_index = ModuleInternedTypeIndex::from_u32(array_type_index);
    let data_index = DataIndex::from_u32(data_index);

    // Calculate the byte-length of the data (as opposed to the element-length
    // of the array).
    let data_range = instance.wasm_data_range(data_index);
    let shared_ty = instance.engine_type_index(array_type_index);
    let array_ty = ArrayType::from_shared_type_index(store.store_opaque_mut().engine(), shared_ty);
    let one_elem_size = array_ty
        .element_type()
        .data_byte_size()
        .expect("Wasm validation ensures that this type have a defined byte size");
    let byte_len = len
        .checked_mul(one_elem_size)
        .and_then(|x| usize::try_from(x).ok())
        .ok_or_else(|| Trap::MemoryOutOfBounds)?;

    // Get the data from the segment, checking bounds.
    let src = usize::try_from(src).map_err(|_| Trap::MemoryOutOfBounds)?;
    let data = instance
        .wasm_data(data_range)
        .get(src..)
        .and_then(|d| d.get(..byte_len))
        .ok_or_else(|| Trap::MemoryOutOfBounds)?;

    // Allocate the (uninitialized) array.
    let gc_layout = store
        .store_opaque_mut()
        .engine()
        .signatures()
        .layout(shared_ty)
        .expect("array types have GC layouts");
    let array_layout = gc_layout.unwrap_array();
    let array_ref = match store
        .store_opaque_mut()
        .unwrap_gc_store_mut()
        .alloc_uninit_array(shared_ty, len, &array_layout)?
    {
        Some(a) => a,
        None => {
            // Collect garbage to hopefully free up space, then try the
            // allocation again.
            store.maybe_async_gc(None)?;
            store
                .store_opaque_mut()
                .unwrap_gc_store_mut()
                .alloc_uninit_array(shared_ty, u32::try_from(byte_len).unwrap(), &array_layout)?
                .ok_or_else(|| GcHeapOutOfMemory::new(()))?
        }
    };

    // Copy the data into the array, initializing it.
    store
        .store_opaque_mut()
        .unwrap_gc_store_mut()
        .gc_object_data(array_ref.as_gc_ref())
        .copy_from_slice(array_layout.base_size, data);

    // Return the array to Wasm!
    let raw = array_ref.as_gc_ref().as_raw_u32();
    store
        .store_opaque_mut()
        .unwrap_gc_store_mut()
        .expose_gc_ref_to_wasm(array_ref.into());
    Ok(raw)
}

/// Implementation of the `array.init_data` instruction.
#[cfg(feature = "gc")]
unsafe fn array_init_data(
    store: &mut dyn VMStore,
    instance: &mut Instance,
    array_type_index: u32,
    array: u32,
    dst: u32,
    data_index: u32,
    src: u32,
    len: u32,
) -> Result<()> {
    use crate::ArrayType;
    use wasmtime_environ::ModuleInternedTypeIndex;

    let array_type_index = ModuleInternedTypeIndex::from_u32(array_type_index);
    let data_index = DataIndex::from_u32(data_index);

    log::trace!(
        "array.init_data(array={array:#x}, dst={dst}, data_index={data_index:?}, src={src}, len={len})",
    );

    // Null check the array.
    let gc_ref = VMGcRef::from_raw_u32(array).ok_or_else(|| Trap::NullReference)?;
    let array = gc_ref
        .into_arrayref(&*store.unwrap_gc_store().gc_heap)
        .expect("gc ref should be an array");

    let dst = usize::try_from(dst).map_err(|_| Trap::MemoryOutOfBounds)?;
    let src = usize::try_from(src).map_err(|_| Trap::MemoryOutOfBounds)?;
    let len = usize::try_from(len).map_err(|_| Trap::MemoryOutOfBounds)?;

    // Bounds check the array.
    let array_len = array.len(store.store_opaque());
    let array_len = usize::try_from(array_len).map_err(|_| Trap::ArrayOutOfBounds)?;
    if dst.checked_add(len).ok_or_else(|| Trap::ArrayOutOfBounds)? > array_len {
        return Err(Trap::ArrayOutOfBounds.into());
    }

    // Calculate the byte length from the array length.
    let shared_ty = instance.engine_type_index(array_type_index);
    let array_ty = ArrayType::from_shared_type_index(store.engine(), shared_ty);
    let one_elem_size = array_ty
        .element_type()
        .data_byte_size()
        .expect("Wasm validation ensures that this type have a defined byte size");
    let data_len = len
        .checked_mul(usize::try_from(one_elem_size).unwrap())
        .ok_or_else(|| Trap::MemoryOutOfBounds)?;

    // Get the data from the segment, checking its bounds.
    let data_range = instance.wasm_data_range(data_index);
    let data = instance
        .wasm_data(data_range)
        .get(src..)
        .and_then(|d| d.get(..data_len))
        .ok_or_else(|| Trap::MemoryOutOfBounds)?;

    // Copy the data into the array.

    let dst_offset = u32::try_from(dst)
        .unwrap()
        .checked_mul(one_elem_size)
        .unwrap();

    let array_layout = store
        .engine()
        .signatures()
        .layout(shared_ty)
        .expect("array types have GC layouts");
    let array_layout = array_layout.unwrap_array();

    let obj_offset = array_layout.base_size.checked_add(dst_offset).unwrap();

    store
        .unwrap_gc_store_mut()
        .gc_object_data(array.as_gc_ref())
        .copy_from_slice(obj_offset, data);

    Ok(())
}

#[cfg(feature = "gc")]
unsafe fn array_new_elem(
    store: &mut dyn VMStore,
    instance: &mut Instance,
    array_type_index: u32,
    elem_index: u32,
    src: u32,
    len: u32,
) -> Result<u32> {
    use crate::{
        store::AutoAssertNoGc,
        vm::const_expr::{ConstEvalContext, ConstExprEvaluator},
        ArrayRef, ArrayRefPre, ArrayType, Func, GcHeapOutOfMemory, RootSet, RootedGcRefImpl, Val,
    };
    use wasmtime_environ::{ModuleInternedTypeIndex, TableSegmentElements};

    // Convert indices to their typed forms.
    let array_type_index = ModuleInternedTypeIndex::from_u32(array_type_index);
    let elem_index = ElemIndex::from_u32(elem_index);

    let mut storage = None;
    let elements = instance.passive_element_segment(&mut storage, elem_index);

    let src = usize::try_from(src).map_err(|_| Trap::TableOutOfBounds)?;
    let len = usize::try_from(len).map_err(|_| Trap::TableOutOfBounds)?;

    let shared_ty = instance.engine_type_index(array_type_index);
    let array_ty = ArrayType::from_shared_type_index(store.engine(), shared_ty);
    let elem_ty = array_ty.element_type();
    let pre = ArrayRefPre::_new(store, array_ty);

    RootSet::with_lifo_scope(store, |store| {
        // Turn the elements into `Val`s.
        let mut vals = Vec::with_capacity(usize::try_from(elements.len()).unwrap());
        match elements {
            TableSegmentElements::Functions(fs) => {
                vals.extend(
                    fs.get(src..)
                        .and_then(|s| s.get(..len))
                        .ok_or_else(|| Trap::TableOutOfBounds)?
                        .iter()
                        .map(|f| {
                            let raw_func_ref = instance.get_func_ref(*f);
                            let func = raw_func_ref.map(|p| Func::from_vm_func_ref(store, p));
                            Val::FuncRef(func)
                        }),
                );
            }
            TableSegmentElements::Expressions(xs) => {
                let xs = xs
                    .get(src..)
                    .and_then(|s| s.get(..len))
                    .ok_or_else(|| Trap::TableOutOfBounds)?;

                let mut const_context = ConstEvalContext::new(instance);
                let mut const_evaluator = ConstExprEvaluator::default();

                vals.extend(xs.iter().map(|x| unsafe {
                    let raw = const_evaluator
                        .eval(store, &mut const_context, x)
                        .expect("const expr should be valid");
                    let mut store = AutoAssertNoGc::new(store);
                    Val::_from_raw(&mut store, raw, elem_ty.unwrap_val_type())
                }));
            }
        }

        let array = match ArrayRef::_new_fixed(store, &pre, &vals) {
            Ok(a) => a,
            Err(e) if e.is::<GcHeapOutOfMemory<()>>() => {
                // Collect garbage to hopefully free up space, then try the
                // allocation again.
                store.maybe_async_gc(None)?;
                ArrayRef::_new_fixed(store, &pre, &vals)?
            }
            Err(e) => return Err(e),
        };

        let mut store = AutoAssertNoGc::new(store);
        let gc_ref = array.try_clone_gc_ref(&mut store)?;
        let raw = gc_ref.as_raw_u32();
        store.unwrap_gc_store_mut().expose_gc_ref_to_wasm(gc_ref);
        Ok(raw)
    })
}

#[cfg(feature = "gc")]
unsafe fn array_init_elem(
    store: &mut dyn VMStore,
    instance: &mut Instance,
    array_type_index: u32,
    array: u32,
    dst: u32,
    elem_index: u32,
    src: u32,
    len: u32,
) -> Result<()> {
    use crate::{
        store::AutoAssertNoGc,
        vm::const_expr::{ConstEvalContext, ConstExprEvaluator},
        ArrayRef, Func, OpaqueRootScope, Val,
    };
    use wasmtime_environ::{ModuleInternedTypeIndex, TableSegmentElements};

    let mut store = OpaqueRootScope::new(store.store_opaque_mut());

    // Convert the indices into their typed forms.
    let _array_type_index = ModuleInternedTypeIndex::from_u32(array_type_index);
    let elem_index = ElemIndex::from_u32(elem_index);

    log::trace!(
            "array.init_elem(array={array:#x}, dst={dst}, elem_index={elem_index:?}, src={src}, len={len})",
        );

    // Convert the raw GC ref into a `Rooted<ArrayRef>`.
    let array = VMGcRef::from_raw_u32(array).ok_or_else(|| Trap::NullReference)?;
    let array = store.unwrap_gc_store_mut().clone_gc_ref(&array);
    let array = {
        let mut no_gc = AutoAssertNoGc::new(&mut store);
        ArrayRef::from_cloned_gc_ref(&mut no_gc, array)
    };

    // Bounds check the destination within the array.
    let array_len = array._len(&store)?;
    log::trace!("array_len = {array_len}");
    if dst.checked_add(len).ok_or_else(|| Trap::ArrayOutOfBounds)? > array_len {
        return Err(Trap::ArrayOutOfBounds.into());
    }

    // Get the passive element segment.
    let mut storage = None;
    let elements = instance.passive_element_segment(&mut storage, elem_index);

    // Convert array offsets into `usize`s.
    let src = usize::try_from(src).map_err(|_| Trap::TableOutOfBounds)?;
    let len = usize::try_from(len).map_err(|_| Trap::TableOutOfBounds)?;

    // Turn the elements into `Val`s.
    let vals = match elements {
        TableSegmentElements::Functions(fs) => fs
            .get(src..)
            .and_then(|s| s.get(..len))
            .ok_or_else(|| Trap::TableOutOfBounds)?
            .iter()
            .map(|f| {
                let raw_func_ref = instance.get_func_ref(*f);
                let func = raw_func_ref.map(|p| Func::from_vm_func_ref(&mut store, p));
                Val::FuncRef(func)
            })
            .collect::<Vec<_>>(),
        TableSegmentElements::Expressions(xs) => {
            let elem_ty = array._ty(&store)?.element_type();
            let elem_ty = elem_ty.unwrap_val_type();

            let mut const_context = ConstEvalContext::new(instance);
            let mut const_evaluator = ConstExprEvaluator::default();

            xs.get(src..)
                .and_then(|s| s.get(..len))
                .ok_or_else(|| Trap::TableOutOfBounds)?
                .iter()
                .map(|x| unsafe {
                    let raw = const_evaluator
                        .eval(&mut store, &mut const_context, x)
                        .expect("const expr should be valid");
                    let mut store = AutoAssertNoGc::new(&mut store);
                    Val::_from_raw(&mut store, raw, elem_ty)
                })
                .collect::<Vec<_>>()
        }
    };

    // Copy the values into the array.
    for (i, val) in vals.into_iter().enumerate() {
        let i = u32::try_from(i).unwrap();
        let j = dst.checked_add(i).unwrap();
        array._set(&mut store, j, val)?;
    }

    Ok(())
}

// TODO: Specialize this libcall for only non-GC array elements, so we never
// have to do GC barriers and their associated indirect calls through the `dyn
// GcHeap`. Instead, implement those copies inline in Wasm code. Then, use bulk
// `memcpy`-style APIs to do the actual copies here.
#[cfg(feature = "gc")]
unsafe fn array_copy(
    store: &mut dyn VMStore,
    _instance: &mut Instance,
    dst_array: u32,
    dst: u32,
    src_array: u32,
    src: u32,
    len: u32,
) -> Result<()> {
    use crate::{store::AutoAssertNoGc, ArrayRef, OpaqueRootScope};

    log::trace!(
            "array.copy(dst_array={dst_array:#x}, dst_index={dst}, src_array={src_array:#x}, src_index={src}, len={len})",
        );

    let mut store = OpaqueRootScope::new(store.store_opaque_mut());
    let mut store = AutoAssertNoGc::new(&mut store);

    // Convert the raw GC refs into `Rooted<ArrayRef>`s.
    let dst_array = VMGcRef::from_raw_u32(dst_array).ok_or_else(|| Trap::NullReference)?;
    let dst_array = store.unwrap_gc_store_mut().clone_gc_ref(&dst_array);
    let dst_array = ArrayRef::from_cloned_gc_ref(&mut store, dst_array);
    let src_array = VMGcRef::from_raw_u32(src_array).ok_or_else(|| Trap::NullReference)?;
    let src_array = store.unwrap_gc_store_mut().clone_gc_ref(&src_array);
    let src_array = ArrayRef::from_cloned_gc_ref(&mut store, src_array);

    // Bounds check the destination array's elements.
    let dst_array_len = dst_array._len(&store)?;
    if dst.checked_add(len).ok_or_else(|| Trap::ArrayOutOfBounds)? > dst_array_len {
        return Err(Trap::ArrayOutOfBounds.into());
    }

    // Bounds check the source array's elements.
    let src_array_len = src_array._len(&store)?;
    if src.checked_add(len).ok_or_else(|| Trap::ArrayOutOfBounds)? > src_array_len {
        return Err(Trap::ArrayOutOfBounds.into());
    }

    let mut store = AutoAssertNoGc::new(&mut store);
    // If `src_array` and `dst_array` are the same array, then we are
    // potentially doing an overlapping copy, so make sure to copy elements in
    // the order that doesn't clobber the source elements before they are
    // copied. If they are different arrays, the order doesn't matter, but we
    // simply don't bother checking.
    if src > dst {
        for i in 0..len {
            let src_elem = src_array._get(&mut store, src + i)?;
            let dst_i = dst + i;
            dst_array._set(&mut store, dst_i, src_elem)?;
        }
    } else {
        for i in (0..len).rev() {
            let src_elem = src_array._get(&mut store, src + i)?;
            let dst_i = dst + i;
            dst_array._set(&mut store, dst_i, src_elem)?;
        }
    }
    Ok(())
}

#[cfg(feature = "gc")]
unsafe fn is_subtype(
    store: &mut dyn VMStore,
    _instance: &mut Instance,
    actual_engine_type: u32,
    expected_engine_type: u32,
) -> u32 {
    use wasmtime_environ::VMSharedTypeIndex;

    let actual = VMSharedTypeIndex::from_u32(actual_engine_type);
    let expected = VMSharedTypeIndex::from_u32(expected_engine_type);

    let is_subtype: bool = store
        .engine()
        .signatures()
        .is_subtype(actual, expected)
        .into();

    log::trace!("is_subtype(actual={actual:?}, expected={expected:?}) -> {is_subtype}",);
    is_subtype as u32
}

// Implementation of `memory.atomic.notify` for locally defined memories.
#[cfg(feature = "threads")]
fn memory_atomic_notify(
    _store: &mut dyn VMStore,
    instance: &mut Instance,
    memory_index: u32,
    addr_index: u64,
    count: u32,
) -> Result<u32, Trap> {
    let memory = MemoryIndex::from_u32(memory_index);
    instance
        .get_runtime_memory(memory)
        .atomic_notify(addr_index, count)
}

// Implementation of `memory.atomic.wait32` for locally defined memories.
#[cfg(feature = "threads")]
fn memory_atomic_wait32(
    _store: &mut dyn VMStore,
    instance: &mut Instance,
    memory_index: u32,
    addr_index: u64,
    expected: u32,
    timeout: u64,
) -> Result<u32, Trap> {
    let timeout = (timeout as i64 >= 0).then(|| Duration::from_nanos(timeout));
    let memory = MemoryIndex::from_u32(memory_index);
    Ok(instance
        .get_runtime_memory(memory)
        .atomic_wait32(addr_index, expected, timeout)? as u32)
}

// Implementation of `memory.atomic.wait64` for locally defined memories.
#[cfg(feature = "threads")]
fn memory_atomic_wait64(
    _store: &mut dyn VMStore,
    instance: &mut Instance,
    memory_index: u32,
    addr_index: u64,
    expected: u64,
    timeout: u64,
) -> Result<u32, Trap> {
    let timeout = (timeout as i64 >= 0).then(|| Duration::from_nanos(timeout));
    let memory = MemoryIndex::from_u32(memory_index);
    Ok(instance
        .get_runtime_memory(memory)
        .atomic_wait64(addr_index, expected, timeout)? as u32)
}

// Hook for when an instance runs out of fuel.
fn out_of_gas(store: &mut dyn VMStore, _instance: &mut Instance) -> Result<()> {
    store.out_of_gas()
}

// Hook for when an instance observes that the epoch has changed.
#[cfg(target_has_atomic = "64")]
fn new_epoch(store: &mut dyn VMStore, _instance: &mut Instance) -> Result<NextEpoch> {
    store.new_epoch().map(NextEpoch)
}

struct NextEpoch(u64);

unsafe impl HostResultHasUnwindSentinel for NextEpoch {
    type Abi = u64;
    const SENTINEL: u64 = u64::MAX;
    fn into_abi(self) -> u64 {
        self.0
    }
}

// Hook for validating malloc using wmemcheck_state.
#[cfg(feature = "wmemcheck")]
unsafe fn check_malloc(
    _store: &mut dyn VMStore,
    instance: &mut Instance,
    addr: u32,
    len: u32,
) -> Result<()> {
    if let Some(wmemcheck_state) = &mut instance.wmemcheck_state {
        let result = wmemcheck_state.malloc(addr as usize, len as usize);
        wmemcheck_state.memcheck_on();
        match result {
            Ok(()) => {}
            Err(DoubleMalloc { addr, len }) => {
                bail!("Double malloc at addr {:#x} of size {}", addr, len)
            }
            Err(OutOfBounds { addr, len }) => {
                bail!("Malloc out of bounds at addr {:#x} of size {}", addr, len);
            }
            _ => {
                panic!("unreachable")
            }
        }
    }
    Ok(())
}

// Hook for validating free using wmemcheck_state.
#[cfg(feature = "wmemcheck")]
unsafe fn check_free(_store: &mut dyn VMStore, instance: &mut Instance, addr: u32) -> Result<()> {
    if let Some(wmemcheck_state) = &mut instance.wmemcheck_state {
        let result = wmemcheck_state.free(addr as usize);
        wmemcheck_state.memcheck_on();
        match result {
            Ok(()) => {}
            Err(InvalidFree { addr }) => {
                bail!("Invalid free at addr {:#x}", addr)
            }
            _ => {
                panic!("unreachable")
            }
        }
    }
    Ok(())
}

// Hook for validating load using wmemcheck_state.
#[cfg(feature = "wmemcheck")]
fn check_load(
    _store: &mut dyn VMStore,
    instance: &mut Instance,
    num_bytes: u32,
    addr: u32,
    offset: u32,
) -> Result<()> {
    if let Some(wmemcheck_state) = &mut instance.wmemcheck_state {
        let result = wmemcheck_state.read(addr as usize + offset as usize, num_bytes as usize);
        match result {
            Ok(()) => {}
            Err(InvalidRead { addr, len }) => {
                bail!("Invalid load at addr {:#x} of size {}", addr, len);
            }
            Err(OutOfBounds { addr, len }) => {
                bail!("Load out of bounds at addr {:#x} of size {}", addr, len);
            }
            _ => {
                panic!("unreachable")
            }
        }
    }
    Ok(())
}

// Hook for validating store using wmemcheck_state.
#[cfg(feature = "wmemcheck")]
fn check_store(
    _store: &mut dyn VMStore,
    instance: &mut Instance,
    num_bytes: u32,
    addr: u32,
    offset: u32,
) -> Result<()> {
    if let Some(wmemcheck_state) = &mut instance.wmemcheck_state {
        let result = wmemcheck_state.write(addr as usize + offset as usize, num_bytes as usize);
        match result {
            Ok(()) => {}
            Err(InvalidWrite { addr, len }) => {
                bail!("Invalid store at addr {:#x} of size {}", addr, len)
            }
            Err(OutOfBounds { addr, len }) => {
                bail!("Store out of bounds at addr {:#x} of size {}", addr, len)
            }
            _ => {
                panic!("unreachable")
            }
        }
    }
    Ok(())
}

// Hook for turning wmemcheck load/store validation off when entering a malloc function.
#[cfg(feature = "wmemcheck")]
fn malloc_start(_store: &mut dyn VMStore, instance: &mut Instance) {
    if let Some(wmemcheck_state) = &mut instance.wmemcheck_state {
        wmemcheck_state.memcheck_off();
    }
}

// Hook for turning wmemcheck load/store validation off when entering a free function.
#[cfg(feature = "wmemcheck")]
fn free_start(_store: &mut dyn VMStore, instance: &mut Instance) {
    if let Some(wmemcheck_state) = &mut instance.wmemcheck_state {
        wmemcheck_state.memcheck_off();
    }
}

// Hook for tracking wasm stack updates using wmemcheck_state.
#[cfg(feature = "wmemcheck")]
fn update_stack_pointer(_store: &mut dyn VMStore, _instance: &mut Instance, _value: u32) {
    // TODO: stack-tracing has yet to be finalized. All memory below
    // the address of the top of the stack is marked as valid for
    // loads and stores.
    // if let Some(wmemcheck_state) = &mut instance.wmemcheck_state {
    //     instance.wmemcheck_state.update_stack_pointer(value as usize);
    // }
}

// Hook updating wmemcheck_state memory state vector every time memory.grow is called.
#[cfg(feature = "wmemcheck")]
fn update_mem_size(_store: &mut dyn VMStore, instance: &mut Instance, num_pages: u32) {
    if let Some(wmemcheck_state) = &mut instance.wmemcheck_state {
        const KIB: usize = 1024;
        let num_bytes = num_pages as usize * 64 * KIB;
        wmemcheck_state.update_mem_size(num_bytes);
    }
}

/// This intrinsic is just used to record trap information.
///
/// The `Infallible` "ok" type here means that this never returns success, it
/// only ever returns an error, and this hooks into the machinery to handle
/// `Result` values to record such trap information.
fn trap(
    _store: &mut dyn VMStore,
    _instance: &mut Instance,
    code: u8,
) -> Result<Infallible, TrapReason> {
    Err(TrapReason::Wasm(
        wasmtime_environ::Trap::from_u8(code).unwrap(),
    ))
}

fn raise(_store: &mut dyn VMStore, _instance: &mut Instance) {
    // SAFETY: this is only called from compiled wasm so we know that wasm has
    // already been entered. It's a dynamic safety precondition that the trap
    // information has already been arranged to be present.
    #[cfg(has_host_compiler_backend)]
    unsafe {
        crate::runtime::vm::traphandlers::raise_preexisting_trap()
    }

    // When Cranelift isn't in use then this is an unused libcall for Pulley, so
    // just insert a stub to catch bugs if it's accidentally called.
    #[cfg(not(has_host_compiler_backend))]
    unreachable!()
}

/// This module contains functions which are used for resolving relocations at
/// runtime if necessary.
///
/// These functions are not used by default and currently the only platform
/// they're used for is on x86_64 when SIMD is disabled and then SSE features
/// are further disabled. In these configurations Cranelift isn't allowed to use
/// native CPU instructions so it falls back to libcalls and we rely on the Rust
/// standard library generally for implementing these.
#[allow(missing_docs)]
pub mod relocs {
    pub extern "C" fn floorf32(f: f32) -> f32 {
        wasmtime_math::WasmFloat::wasm_floor(f)
    }

    pub extern "C" fn floorf64(f: f64) -> f64 {
        wasmtime_math::WasmFloat::wasm_floor(f)
    }

    pub extern "C" fn ceilf32(f: f32) -> f32 {
        wasmtime_math::WasmFloat::wasm_ceil(f)
    }

    pub extern "C" fn ceilf64(f: f64) -> f64 {
        wasmtime_math::WasmFloat::wasm_ceil(f)
    }

    pub extern "C" fn truncf32(f: f32) -> f32 {
        wasmtime_math::WasmFloat::wasm_trunc(f)
    }

    pub extern "C" fn truncf64(f: f64) -> f64 {
        wasmtime_math::WasmFloat::wasm_trunc(f)
    }

    pub extern "C" fn nearestf32(x: f32) -> f32 {
        wasmtime_math::WasmFloat::wasm_nearest(x)
    }

    pub extern "C" fn nearestf64(x: f64) -> f64 {
        wasmtime_math::WasmFloat::wasm_nearest(x)
    }

    pub extern "C" fn fmaf32(a: f32, b: f32, c: f32) -> f32 {
        wasmtime_math::WasmFloat::wasm_mul_add(a, b, c)
    }

    pub extern "C" fn fmaf64(a: f64, b: f64, c: f64) -> f64 {
        wasmtime_math::WasmFloat::wasm_mul_add(a, b, c)
    }

    // This intrinsic is only used on x86_64 platforms as an implementation of
    // the `pshufb` instruction when SSSE3 is not available.
    #[cfg(target_arch = "x86_64")]
    use core::arch::x86_64::__m128i;
    #[cfg(target_arch = "x86_64")]
    #[target_feature(enable = "sse")]
    #[allow(improper_ctypes_definitions)]
    pub unsafe extern "C" fn x86_pshufb(a: __m128i, b: __m128i) -> __m128i {
        union U {
            reg: __m128i,
            mem: [u8; 16],
        }

        unsafe {
            let a = U { reg: a }.mem;
            let b = U { reg: b }.mem;

            let select = |arr: &[u8; 16], byte: u8| {
                if byte & 0x80 != 0 {
                    0x00
                } else {
                    arr[(byte & 0xf) as usize]
                }
            };

            U {
                mem: [
                    select(&a, b[0]),
                    select(&a, b[1]),
                    select(&a, b[2]),
                    select(&a, b[3]),
                    select(&a, b[4]),
                    select(&a, b[5]),
                    select(&a, b[6]),
                    select(&a, b[7]),
                    select(&a, b[8]),
                    select(&a, b[9]),
                    select(&a, b[10]),
                    select(&a, b[11]),
                    select(&a, b[12]),
                    select(&a, b[13]),
                    select(&a, b[14]),
                    select(&a, b[15]),
                ],
            }
            .reg
        }
    }
}