arbitrary/unstructured.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
// Copyright © 2019 The Rust Fuzz Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Wrappers around raw, unstructured bytes.
use crate::{Arbitrary, Error, Result};
use std::marker::PhantomData;
use std::ops::ControlFlow;
use std::{mem, ops};
/// A source of unstructured data.
///
/// An `Unstructured` helps `Arbitrary` implementations interpret raw data
/// (typically provided by a fuzzer) as a "DNA string" that describes how to
/// construct the `Arbitrary` type. The goal is that a small change to the "DNA
/// string" (the raw data wrapped by an `Unstructured`) results in a small
/// change to the generated `Arbitrary` instance. This helps a fuzzer
/// efficiently explore the `Arbitrary`'s input space.
///
/// `Unstructured` is deterministic: given the same raw data, the same series of
/// API calls will return the same results (modulo system resource constraints,
/// like running out of memory). However, `Unstructured` does not guarantee
/// anything beyond that: it makes not guarantee that it will yield bytes from
/// the underlying data in any particular order.
///
/// You shouldn't generally need to use an `Unstructured` unless you are writing
/// a custom `Arbitrary` implementation by hand, instead of deriving it. Mostly,
/// you should just be passing it through to nested `Arbitrary::arbitrary`
/// calls.
///
/// # Example
///
/// Imagine you were writing a color conversion crate. You might want to write
/// fuzz tests that take a random RGB color and assert various properties, run
/// functions and make sure nothing panics, etc.
///
/// Below is what translating the fuzzer's raw input into an `Unstructured` and
/// using that to generate an arbitrary RGB color might look like:
///
/// ```
/// # #[cfg(feature = "derive")] fn foo() {
/// use arbitrary::{Arbitrary, Unstructured};
///
/// /// An RGB color.
/// #[derive(Arbitrary)]
/// pub struct Rgb {
/// r: u8,
/// g: u8,
/// b: u8,
/// }
///
/// // Get the raw bytes from the fuzzer.
/// # let get_input_from_fuzzer = || &[];
/// let raw_data: &[u8] = get_input_from_fuzzer();
///
/// // Wrap it in an `Unstructured`.
/// let mut unstructured = Unstructured::new(raw_data);
///
/// // Generate an `Rgb` color and run our checks.
/// if let Ok(rgb) = Rgb::arbitrary(&mut unstructured) {
/// # let run_my_color_conversion_checks = |_| {};
/// run_my_color_conversion_checks(rgb);
/// }
/// # }
/// ```
#[derive(Debug)]
pub struct Unstructured<'a> {
data: &'a [u8],
}
impl<'a> Unstructured<'a> {
/// Create a new `Unstructured` from the given raw data.
///
/// # Example
///
/// ```
/// use arbitrary::Unstructured;
///
/// let u = Unstructured::new(&[1, 2, 3, 4]);
/// ```
pub fn new(data: &'a [u8]) -> Self {
Unstructured { data }
}
/// Get the number of remaining bytes of underlying data that are still
/// available.
///
/// # Example
///
/// ```
/// use arbitrary::{Arbitrary, Unstructured};
///
/// let mut u = Unstructured::new(&[1, 2, 3]);
///
/// // Initially have three bytes of data.
/// assert_eq!(u.len(), 3);
///
/// // Generating a `bool` consumes one byte from the underlying data, so
/// // we are left with two bytes afterwards.
/// let _ = bool::arbitrary(&mut u);
/// assert_eq!(u.len(), 2);
/// ```
#[inline]
pub fn len(&self) -> usize {
self.data.len()
}
/// Is the underlying unstructured data exhausted?
///
/// `unstructured.is_empty()` is the same as `unstructured.len() == 0`.
///
/// # Example
///
/// ```
/// use arbitrary::{Arbitrary, Unstructured};
///
/// let mut u = Unstructured::new(&[1, 2, 3, 4]);
///
/// // Initially, we are not empty.
/// assert!(!u.is_empty());
///
/// // Generating a `u32` consumes all four bytes of the underlying data, so
/// // we become empty afterwards.
/// let _ = u32::arbitrary(&mut u);
/// assert!(u.is_empty());
/// ```
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Generate an arbitrary instance of `A`.
///
/// This is simply a helper method that is equivalent to `<A as
/// Arbitrary>::arbitrary(self)`. This helper is a little bit more concise,
/// and can be used in situations where Rust's type inference will figure
/// out what `A` should be.
///
/// # Example
///
/// ```
/// # #[cfg(feature="derive")] fn foo() -> arbitrary::Result<()> {
/// use arbitrary::{Arbitrary, Unstructured};
///
/// #[derive(Arbitrary)]
/// struct MyType {
/// // ...
/// }
///
/// fn do_stuff(value: MyType) {
/// # let _ = value;
/// // ...
/// }
///
/// let mut u = Unstructured::new(&[1, 2, 3, 4]);
///
/// // Rust's type inference can figure out that `value` should be of type
/// // `MyType` here:
/// let value = u.arbitrary()?;
/// do_stuff(value);
/// # Ok(()) }
/// ```
pub fn arbitrary<A>(&mut self) -> Result<A>
where
A: Arbitrary<'a>,
{
<A as Arbitrary<'a>>::arbitrary(self)
}
/// Get the number of elements to insert when building up a collection of
/// arbitrary `ElementType`s.
///
/// This uses the [`<ElementType as
/// Arbitrary>::size_hint`][crate::Arbitrary::size_hint] method to smartly
/// choose a length such that we most likely have enough underlying bytes to
/// construct that many arbitrary `ElementType`s.
///
/// This should only be called within an `Arbitrary` implementation.
///
/// # Example
///
/// ```
/// use arbitrary::{Arbitrary, Result, Unstructured};
/// # pub struct MyCollection<T> { _t: std::marker::PhantomData<T> }
/// # impl<T> MyCollection<T> {
/// # pub fn with_capacity(capacity: usize) -> Self { MyCollection { _t: std::marker::PhantomData } }
/// # pub fn insert(&mut self, element: T) {}
/// # }
///
/// impl<'a, T> Arbitrary<'a> for MyCollection<T>
/// where
/// T: Arbitrary<'a>,
/// {
/// fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
/// // Get the number of `T`s we should insert into our collection.
/// let len = u.arbitrary_len::<T>()?;
///
/// // And then create a collection of that length!
/// let mut my_collection = MyCollection::with_capacity(len);
/// for _ in 0..len {
/// let element = T::arbitrary(u)?;
/// my_collection.insert(element);
/// }
///
/// Ok(my_collection)
/// }
/// }
/// ```
pub fn arbitrary_len<ElementType>(&mut self) -> Result<usize>
where
ElementType: Arbitrary<'a>,
{
let byte_size = self.arbitrary_byte_size()?;
let (lower, upper) = <ElementType as Arbitrary>::size_hint(0);
let elem_size = upper.unwrap_or(lower * 2);
let elem_size = std::cmp::max(1, elem_size);
Ok(byte_size / elem_size)
}
fn arbitrary_byte_size(&mut self) -> Result<usize> {
if self.data.is_empty() {
Ok(0)
} else if self.data.len() == 1 {
self.data = &[];
Ok(0)
} else {
// Take lengths from the end of the data, since the `libFuzzer` folks
// found that this lets fuzzers more efficiently explore the input
// space.
//
// https://github.com/rust-fuzz/libfuzzer-sys/blob/0c450753/libfuzzer/utils/FuzzedDataProvider.h#L92-L97
// We only consume as many bytes as necessary to cover the entire
// range of the byte string.
// Note: We cast to u64 so we don't overflow when checking u32::MAX + 4 on 32-bit archs
let len = if self.data.len() as u64 <= u8::MAX as u64 + 1 {
let bytes = 1;
let max_size = self.data.len() - bytes;
let (rest, for_size) = self.data.split_at(max_size);
self.data = rest;
Self::int_in_range_impl(0..=max_size as u8, for_size.iter().copied())?.0 as usize
} else if self.data.len() as u64 <= u16::MAX as u64 + 2 {
let bytes = 2;
let max_size = self.data.len() - bytes;
let (rest, for_size) = self.data.split_at(max_size);
self.data = rest;
Self::int_in_range_impl(0..=max_size as u16, for_size.iter().copied())?.0 as usize
} else if self.data.len() as u64 <= u32::MAX as u64 + 4 {
let bytes = 4;
let max_size = self.data.len() - bytes;
let (rest, for_size) = self.data.split_at(max_size);
self.data = rest;
Self::int_in_range_impl(0..=max_size as u32, for_size.iter().copied())?.0 as usize
} else {
let bytes = 8;
let max_size = self.data.len() - bytes;
let (rest, for_size) = self.data.split_at(max_size);
self.data = rest;
Self::int_in_range_impl(0..=max_size as u64, for_size.iter().copied())?.0 as usize
};
Ok(len)
}
}
/// Generate an integer within the given range.
///
/// Do not use this to generate the size of a collection. Use
/// `arbitrary_len` instead.
///
/// # Panics
///
/// Panics if `range.start > range.end`. That is, the given range must be
/// non-empty.
///
/// # Example
///
/// ```
/// # fn foo() -> arbitrary::Result<()> {
/// use arbitrary::{Arbitrary, Unstructured};
///
/// let mut u = Unstructured::new(&[1, 2, 3, 4]);
///
/// let x: i32 = u.int_in_range(-5_000..=-1_000)?;
///
/// assert!(-5_000 <= x);
/// assert!(x <= -1_000);
/// # Ok(()) }
/// ```
pub fn int_in_range<T>(&mut self, range: ops::RangeInclusive<T>) -> Result<T>
where
T: Int,
{
let (result, bytes_consumed) = Self::int_in_range_impl(range, self.data.iter().cloned())?;
self.data = &self.data[bytes_consumed..];
Ok(result)
}
fn int_in_range_impl<T>(
range: ops::RangeInclusive<T>,
mut bytes: impl Iterator<Item = u8>,
) -> Result<(T, usize)>
where
T: Int,
{
let start = *range.start();
let end = *range.end();
assert!(
start <= end,
"`arbitrary::Unstructured::int_in_range` requires a non-empty range"
);
// When there is only one possible choice, don't waste any entropy from
// the underlying data.
if start == end {
return Ok((start, 0));
}
// From here on out we work with the unsigned representation. All of the
// operations performed below work out just as well whether or not `T`
// is a signed or unsigned integer.
let start = start.to_unsigned();
let end = end.to_unsigned();
let delta = end.wrapping_sub(start);
debug_assert_ne!(delta, T::Unsigned::ZERO);
// Compute an arbitrary integer offset from the start of the range. We
// do this by consuming `size_of(T)` bytes from the input to create an
// arbitrary integer and then clamping that int into our range bounds
// with a modulo operation.
let mut arbitrary_int = T::Unsigned::ZERO;
let mut bytes_consumed: usize = 0;
while (bytes_consumed < mem::size_of::<T>())
&& (delta >> T::Unsigned::from_usize(bytes_consumed * 8)) > T::Unsigned::ZERO
{
let byte = match bytes.next() {
None => break,
Some(b) => b,
};
bytes_consumed += 1;
// Combine this byte into our arbitrary integer, but avoid
// overflowing the shift for `u8` and `i8`.
arbitrary_int = if mem::size_of::<T>() == 1 {
T::Unsigned::from_u8(byte)
} else {
(arbitrary_int << 8) | T::Unsigned::from_u8(byte)
};
}
let offset = if delta == T::Unsigned::MAX {
arbitrary_int
} else {
arbitrary_int % (delta.checked_add(T::Unsigned::ONE).unwrap())
};
// Finally, we add `start` to our offset from `start` to get the result
// actual value within the range.
let result = start.wrapping_add(offset);
// And convert back to our maybe-signed representation.
let result = T::from_unsigned(result);
debug_assert!(*range.start() <= result);
debug_assert!(result <= *range.end());
Ok((result, bytes_consumed))
}
/// Choose one of the given choices.
///
/// This should only be used inside of `Arbitrary` implementations.
///
/// Returns an error if there is not enough underlying data to make a
/// choice or if no choices are provided.
///
/// # Examples
///
/// Selecting from an array of choices:
///
/// ```
/// use arbitrary::Unstructured;
///
/// let mut u = Unstructured::new(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 0]);
/// let choices = ['a', 'b', 'c', 'd', 'e', 'f', 'g'];
///
/// let choice = u.choose(&choices).unwrap();
///
/// println!("chose {}", choice);
/// ```
///
/// An error is returned if no choices are provided:
///
/// ```
/// use arbitrary::Unstructured;
///
/// let mut u = Unstructured::new(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 0]);
/// let choices: [char; 0] = [];
///
/// let result = u.choose(&choices);
///
/// assert!(result.is_err());
/// ```
pub fn choose<'b, T>(&mut self, choices: &'b [T]) -> Result<&'b T> {
let idx = self.choose_index(choices.len())?;
Ok(&choices[idx])
}
/// Choose one of the given iterator choices.
///
/// This should only be used inside of `Arbitrary` implementations.
///
/// Returns an error if there is not enough underlying data to make a
/// choice or if no choices are provided.
///
/// # Examples
///
/// Selecting a random item from a set:
///
/// ```
/// use std::collections::BTreeSet;
/// use arbitrary::Unstructured;
///
/// let mut u = Unstructured::new(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 0]);
/// let set = BTreeSet::from(['a', 'b', 'c']);
///
/// let choice = u.choose_iter(set.iter()).unwrap();
///
/// println!("chose {}", choice);
/// ```
pub fn choose_iter<T, I>(&mut self, choices: I) -> Result<T>
where
I: IntoIterator<Item = T>,
I::IntoIter: ExactSizeIterator,
{
let mut choices = choices.into_iter();
let idx = self.choose_index(choices.len())?;
let choice = choices
.nth(idx)
.expect("ExactSizeIterator should have correct len");
Ok(choice)
}
/// Choose a value in `0..len`.
///
/// Returns an error if the `len` is zero.
///
/// # Examples
///
/// Using Fisher–Yates shuffle shuffle to gerate an arbitrary permutation.
///
/// [Fisher–Yates shuffle]: https://en.wikipedia.org/wiki/Fisher–Yates_shuffle
///
/// ```
/// use arbitrary::Unstructured;
///
/// let mut u = Unstructured::new(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 0]);
/// let mut permutation = ['a', 'b', 'c', 'd', 'e', 'f', 'g'];
/// let mut to_permute = &mut permutation[..];
/// while to_permute.len() > 1 {
/// let idx = u.choose_index(to_permute.len()).unwrap();
/// to_permute.swap(0, idx);
/// to_permute = &mut to_permute[1..];
/// }
///
/// println!("permutation: {:?}", permutation);
/// ```
///
/// An error is returned if the length is zero:
///
/// ```
/// use arbitrary::Unstructured;
///
/// let mut u = Unstructured::new(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 0]);
/// let array: [i32; 0] = [];
///
/// let result = u.choose_index(array.len());
///
/// assert!(result.is_err());
/// ```
pub fn choose_index(&mut self, len: usize) -> Result<usize> {
if len == 0 {
return Err(Error::EmptyChoose);
}
let idx = self.int_in_range(0..=len - 1)?;
Ok(idx)
}
/// Generate a boolean according to the given ratio.
///
/// # Panics
///
/// Panics when the numerator and denominator do not meet these constraints:
///
/// * `0 < numerator <= denominator`
///
/// # Example
///
/// Generate a boolean that is `true` five sevenths of the time:
///
/// ```
/// # fn foo() -> arbitrary::Result<()> {
/// use arbitrary::Unstructured;
///
/// # let my_data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0];
/// let mut u = Unstructured::new(&my_data);
///
/// if u.ratio(5, 7)? {
/// // Take this branch 5/7 of the time.
/// }
/// # Ok(())
/// # }
/// ```
pub fn ratio<T>(&mut self, numerator: T, denominator: T) -> Result<bool>
where
T: Int,
{
assert!(T::ZERO < numerator);
assert!(numerator <= denominator);
let x = self.int_in_range(T::ONE..=denominator)?;
Ok(x <= numerator)
}
/// Fill a `buffer` with bytes from the underlying raw data.
///
/// This should only be called within an `Arbitrary` implementation. This is
/// a very low-level operation. You should generally prefer calling nested
/// `Arbitrary` implementations like `<Vec<u8>>::arbitrary` and
/// `String::arbitrary` over using this method directly.
///
/// If this `Unstructured` does not have enough underlying data to fill the
/// whole `buffer`, it pads the buffer out with zeros.
///
/// # Example
///
/// ```
/// use arbitrary::Unstructured;
///
/// let mut u = Unstructured::new(&[1, 2, 3, 4]);
///
/// let mut buf = [0; 2];
///
/// assert!(u.fill_buffer(&mut buf).is_ok());
/// assert_eq!(buf, [1, 2]);
///
/// assert!(u.fill_buffer(&mut buf).is_ok());
/// assert_eq!(buf, [3, 4]);
///
/// assert!(u.fill_buffer(&mut buf).is_ok());
/// assert_eq!(buf, [0, 0]);
/// ```
pub fn fill_buffer(&mut self, buffer: &mut [u8]) -> Result<()> {
let n = std::cmp::min(buffer.len(), self.data.len());
buffer[..n].copy_from_slice(&self.data[..n]);
for byte in buffer[n..].iter_mut() {
*byte = 0;
}
self.data = &self.data[n..];
Ok(())
}
/// Provide `size` bytes from the underlying raw data.
///
/// This should only be called within an `Arbitrary` implementation. This is
/// a very low-level operation. You should generally prefer calling nested
/// `Arbitrary` implementations like `<Vec<u8>>::arbitrary` and
/// `String::arbitrary` over using this method directly.
///
/// # Example
///
/// ```
/// use arbitrary::Unstructured;
///
/// let mut u = Unstructured::new(&[1, 2, 3, 4]);
///
/// assert!(u.bytes(2).unwrap() == &[1, 2]);
/// assert!(u.bytes(2).unwrap() == &[3, 4]);
/// ```
pub fn bytes(&mut self, size: usize) -> Result<&'a [u8]> {
if self.data.len() < size {
return Err(Error::NotEnoughData);
}
let (for_buf, rest) = self.data.split_at(size);
self.data = rest;
Ok(for_buf)
}
/// Peek at `size` number of bytes of the underlying raw input.
///
/// Does not consume the bytes, only peeks at them.
///
/// Returns `None` if there are not `size` bytes left in the underlying raw
/// input.
///
/// # Example
///
/// ```
/// use arbitrary::Unstructured;
///
/// let u = Unstructured::new(&[1, 2, 3]);
///
/// assert_eq!(u.peek_bytes(0).unwrap(), []);
/// assert_eq!(u.peek_bytes(1).unwrap(), [1]);
/// assert_eq!(u.peek_bytes(2).unwrap(), [1, 2]);
/// assert_eq!(u.peek_bytes(3).unwrap(), [1, 2, 3]);
///
/// assert!(u.peek_bytes(4).is_none());
/// ```
pub fn peek_bytes(&self, size: usize) -> Option<&'a [u8]> {
self.data.get(..size)
}
/// Consume all of the rest of the remaining underlying bytes.
///
/// Returns a slice of all the remaining, unconsumed bytes.
///
/// # Example
///
/// ```
/// use arbitrary::Unstructured;
///
/// let mut u = Unstructured::new(&[1, 2, 3]);
///
/// let mut remaining = u.take_rest();
///
/// assert_eq!(remaining, [1, 2, 3]);
/// ```
pub fn take_rest(mut self) -> &'a [u8] {
mem::take(&mut self.data)
}
/// Provide an iterator over elements for constructing a collection
///
/// This is useful for implementing [`Arbitrary::arbitrary`] on collections
/// since the implementation is simply `u.arbitrary_iter()?.collect()`
pub fn arbitrary_iter<'b, ElementType: Arbitrary<'a>>(
&'b mut self,
) -> Result<ArbitraryIter<'a, 'b, ElementType>> {
Ok(ArbitraryIter {
u: &mut *self,
_marker: PhantomData,
})
}
/// Provide an iterator over elements for constructing a collection from
/// all the remaining bytes.
///
/// This is useful for implementing [`Arbitrary::arbitrary_take_rest`] on collections
/// since the implementation is simply `u.arbitrary_take_rest_iter()?.collect()`
pub fn arbitrary_take_rest_iter<ElementType: Arbitrary<'a>>(
self,
) -> Result<ArbitraryTakeRestIter<'a, ElementType>> {
Ok(ArbitraryTakeRestIter {
u: self,
_marker: PhantomData,
})
}
/// Call the given function an arbitrary number of times.
///
/// The function is given this `Unstructured` so that it can continue to
/// generate arbitrary data and structures.
///
/// You may optionaly specify minimum and maximum bounds on the number of
/// times the function is called.
///
/// You may break out of the loop early by returning
/// `Ok(std::ops::ControlFlow::Break)`. To continue the loop, return
/// `Ok(std::ops::ControlFlow::Continue)`.
///
/// # Panics
///
/// Panics if `min > max`.
///
/// # Example
///
/// Call a closure that generates an arbitrary type inside a context an
/// arbitrary number of times:
///
/// ```
/// use arbitrary::{Result, Unstructured};
/// use std::ops::ControlFlow;
///
/// enum Type {
/// /// A boolean type.
/// Bool,
///
/// /// An integer type.
/// Int,
///
/// /// A list of the `i`th type in this type's context.
/// List(usize),
/// }
///
/// fn arbitrary_types_context(u: &mut Unstructured) -> Result<Vec<Type>> {
/// let mut context = vec![];
///
/// u.arbitrary_loop(Some(10), Some(20), |u| {
/// let num_choices = if context.is_empty() {
/// 2
/// } else {
/// 3
/// };
/// let ty = match u.int_in_range::<u8>(1..=num_choices)? {
/// 1 => Type::Bool,
/// 2 => Type::Int,
/// 3 => Type::List(u.int_in_range(0..=context.len() - 1)?),
/// _ => unreachable!(),
/// };
/// context.push(ty);
/// Ok(ControlFlow::Continue(()))
/// })?;
///
/// // The number of loop iterations are constrained by the min/max
/// // bounds that we provided.
/// assert!(context.len() >= 10);
/// assert!(context.len() <= 20);
///
/// Ok(context)
/// }
/// ```
pub fn arbitrary_loop(
&mut self,
min: Option<u32>,
max: Option<u32>,
mut f: impl FnMut(&mut Self) -> Result<ControlFlow<(), ()>>,
) -> Result<()> {
let min = min.unwrap_or(0);
let max = max.unwrap_or(u32::MAX);
for _ in 0..self.int_in_range(min..=max)? {
match f(self)? {
ControlFlow::Continue(_) => continue,
ControlFlow::Break(_) => break,
}
}
Ok(())
}
}
/// Utility iterator produced by [`Unstructured::arbitrary_iter`]
pub struct ArbitraryIter<'a, 'b, ElementType> {
u: &'b mut Unstructured<'a>,
_marker: PhantomData<ElementType>,
}
impl<'a, 'b, ElementType: Arbitrary<'a>> Iterator for ArbitraryIter<'a, 'b, ElementType> {
type Item = Result<ElementType>;
fn next(&mut self) -> Option<Result<ElementType>> {
let keep_going = self.u.arbitrary().unwrap_or(false);
if keep_going {
Some(Arbitrary::arbitrary(self.u))
} else {
None
}
}
}
/// Utility iterator produced by [`Unstructured::arbitrary_take_rest_iter`]
pub struct ArbitraryTakeRestIter<'a, ElementType> {
u: Unstructured<'a>,
_marker: PhantomData<ElementType>,
}
impl<'a, ElementType: Arbitrary<'a>> Iterator for ArbitraryTakeRestIter<'a, ElementType> {
type Item = Result<ElementType>;
fn next(&mut self) -> Option<Result<ElementType>> {
let keep_going = self.u.arbitrary().unwrap_or(false);
if keep_going {
Some(Arbitrary::arbitrary(&mut self.u))
} else {
None
}
}
}
/// A trait that is implemented for all of the primitive integers:
///
/// * `u8`
/// * `u16`
/// * `u32`
/// * `u64`
/// * `u128`
/// * `usize`
/// * `i8`
/// * `i16`
/// * `i32`
/// * `i64`
/// * `i128`
/// * `isize`
///
/// Don't implement this trait yourself.
pub trait Int:
Copy
+ std::fmt::Debug
+ PartialOrd
+ Ord
+ ops::Sub<Self, Output = Self>
+ ops::Rem<Self, Output = Self>
+ ops::Shr<Self, Output = Self>
+ ops::Shl<usize, Output = Self>
+ ops::BitOr<Self, Output = Self>
{
#[doc(hidden)]
type Unsigned: Int;
#[doc(hidden)]
const ZERO: Self;
#[doc(hidden)]
const ONE: Self;
#[doc(hidden)]
const MAX: Self;
#[doc(hidden)]
fn from_u8(b: u8) -> Self;
#[doc(hidden)]
fn from_usize(u: usize) -> Self;
#[doc(hidden)]
fn checked_add(self, rhs: Self) -> Option<Self>;
#[doc(hidden)]
fn wrapping_add(self, rhs: Self) -> Self;
#[doc(hidden)]
fn wrapping_sub(self, rhs: Self) -> Self;
#[doc(hidden)]
fn to_unsigned(self) -> Self::Unsigned;
#[doc(hidden)]
fn from_unsigned(unsigned: Self::Unsigned) -> Self;
}
macro_rules! impl_int {
( $( $ty:ty : $unsigned_ty: ty ; )* ) => {
$(
impl Int for $ty {
type Unsigned = $unsigned_ty;
const ZERO: Self = 0;
const ONE: Self = 1;
const MAX: Self = Self::MAX;
fn from_u8(b: u8) -> Self {
b as Self
}
fn from_usize(u: usize) -> Self {
u as Self
}
fn checked_add(self, rhs: Self) -> Option<Self> {
<$ty>::checked_add(self, rhs)
}
fn wrapping_add(self, rhs: Self) -> Self {
<$ty>::wrapping_add(self, rhs)
}
fn wrapping_sub(self, rhs: Self) -> Self {
<$ty>::wrapping_sub(self, rhs)
}
fn to_unsigned(self) -> Self::Unsigned {
self as $unsigned_ty
}
fn from_unsigned(unsigned: $unsigned_ty) -> Self {
unsigned as Self
}
}
)*
}
}
impl_int! {
u8: u8;
u16: u16;
u32: u32;
u64: u64;
u128: u128;
usize: usize;
i8: u8;
i16: u16;
i32: u32;
i64: u64;
i128: u128;
isize: usize;
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_byte_size() {
let mut u = Unstructured::new(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 6]);
// Should take one byte off the end
assert_eq!(u.arbitrary_byte_size().unwrap(), 6);
assert_eq!(u.len(), 9);
let mut v = vec![0; 260];
v.push(1);
v.push(4);
let mut u = Unstructured::new(&v);
// Should read two bytes off the end
assert_eq!(u.arbitrary_byte_size().unwrap(), 0x104);
assert_eq!(u.len(), 260);
}
#[test]
fn int_in_range_of_one() {
let mut u = Unstructured::new(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 6]);
let x = u.int_in_range(0..=0).unwrap();
assert_eq!(x, 0);
let choice = *u.choose(&[42]).unwrap();
assert_eq!(choice, 42)
}
#[test]
fn int_in_range_uses_minimal_amount_of_bytes() {
let mut u = Unstructured::new(&[1, 2]);
assert_eq!(1, u.int_in_range::<u8>(0..=u8::MAX).unwrap());
assert_eq!(u.len(), 1);
let mut u = Unstructured::new(&[1, 2]);
assert_eq!(1, u.int_in_range::<u32>(0..=u8::MAX as u32).unwrap());
assert_eq!(u.len(), 1);
let mut u = Unstructured::new(&[1]);
assert_eq!(1, u.int_in_range::<u32>(0..=u8::MAX as u32 + 1).unwrap());
assert!(u.is_empty());
}
#[test]
fn int_in_range_in_bounds() {
for input in u8::MIN..=u8::MAX {
let input = [input];
let mut u = Unstructured::new(&input);
let x = u.int_in_range(1..=u8::MAX).unwrap();
assert_ne!(x, 0);
let mut u = Unstructured::new(&input);
let x = u.int_in_range(0..=u8::MAX - 1).unwrap();
assert_ne!(x, u8::MAX);
}
}
#[test]
fn int_in_range_covers_unsigned_range() {
// Test that we generate all values within the range given to
// `int_in_range`.
let mut full = [false; u8::MAX as usize + 1];
let mut no_zero = [false; u8::MAX as usize];
let mut no_max = [false; u8::MAX as usize];
let mut narrow = [false; 10];
for input in u8::MIN..=u8::MAX {
let input = [input];
let mut u = Unstructured::new(&input);
let x = u.int_in_range(0..=u8::MAX).unwrap();
full[x as usize] = true;
let mut u = Unstructured::new(&input);
let x = u.int_in_range(1..=u8::MAX).unwrap();
no_zero[x as usize - 1] = true;
let mut u = Unstructured::new(&input);
let x = u.int_in_range(0..=u8::MAX - 1).unwrap();
no_max[x as usize] = true;
let mut u = Unstructured::new(&input);
let x = u.int_in_range(100..=109).unwrap();
narrow[x as usize - 100] = true;
}
for (i, covered) in full.iter().enumerate() {
assert!(covered, "full[{}] should have been generated", i);
}
for (i, covered) in no_zero.iter().enumerate() {
assert!(covered, "no_zero[{}] should have been generated", i);
}
for (i, covered) in no_max.iter().enumerate() {
assert!(covered, "no_max[{}] should have been generated", i);
}
for (i, covered) in narrow.iter().enumerate() {
assert!(covered, "narrow[{}] should have been generated", i);
}
}
#[test]
fn int_in_range_covers_signed_range() {
// Test that we generate all values within the range given to
// `int_in_range`.
let mut full = [false; u8::MAX as usize + 1];
let mut no_min = [false; u8::MAX as usize];
let mut no_max = [false; u8::MAX as usize];
let mut narrow = [false; 21];
let abs_i8_min: isize = 128;
for input in 0..=u8::MAX {
let input = [input];
let mut u = Unstructured::new(&input);
let x = u.int_in_range(i8::MIN..=i8::MAX).unwrap();
full[(x as isize + abs_i8_min) as usize] = true;
let mut u = Unstructured::new(&input);
let x = u.int_in_range(i8::MIN + 1..=i8::MAX).unwrap();
no_min[(x as isize + abs_i8_min - 1) as usize] = true;
let mut u = Unstructured::new(&input);
let x = u.int_in_range(i8::MIN..=i8::MAX - 1).unwrap();
no_max[(x as isize + abs_i8_min) as usize] = true;
let mut u = Unstructured::new(&input);
let x = u.int_in_range(-10..=10).unwrap();
narrow[(x as isize + 10) as usize] = true;
}
for (i, covered) in full.iter().enumerate() {
assert!(covered, "full[{}] should have been generated", i);
}
for (i, covered) in no_min.iter().enumerate() {
assert!(covered, "no_min[{}] should have been generated", i);
}
for (i, covered) in no_max.iter().enumerate() {
assert!(covered, "no_max[{}] should have been generated", i);
}
for (i, covered) in narrow.iter().enumerate() {
assert!(covered, "narrow[{}] should have been generated", i);
}
}
}