wasmtime/runtime/vm/
gc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#[cfg(feature = "gc")]
mod enabled;
#[cfg(feature = "gc")]
pub use enabled::*;

#[cfg(not(feature = "gc"))]
mod disabled;
#[cfg(not(feature = "gc"))]
pub use disabled::*;

mod func_ref;
mod gc_ref;
mod gc_runtime;
mod host_data;
mod i31;

pub use func_ref::*;
pub use gc_ref::*;
pub use gc_runtime::*;
pub use host_data::*;
pub use i31::*;

use crate::prelude::*;
use crate::runtime::vm::GcHeapAllocationIndex;
use core::alloc::Layout;
use core::any::Any;
use core::mem::MaybeUninit;
use wasmtime_environ::{GcArrayLayout, GcStructLayout, VMGcKind, VMSharedTypeIndex};

/// GC-related data that is one-to-one with a `wasmtime::Store`.
///
/// Contains everything we need to do collections, invoke barriers, etc...
///
/// In general, exposes a very similar interface to `GcHeap`, but fills in some
/// of the context arguments for callers (such as the `ExternRefHostDataTable`)
/// since they are all stored together inside `GcStore`.
pub struct GcStore {
    /// This GC heap's allocation index (primarily used for integrating with the
    /// pooling allocator).
    pub allocation_index: GcHeapAllocationIndex,

    /// The actual GC heap.
    pub gc_heap: Box<dyn GcHeap>,

    /// The `externref` host data table for this GC heap.
    pub host_data_table: ExternRefHostDataTable,

    /// The function-references table for this GC heap.
    pub func_ref_table: FuncRefTable,
}

impl GcStore {
    /// Create a new `GcStore`.
    pub fn new(allocation_index: GcHeapAllocationIndex, gc_heap: Box<dyn GcHeap>) -> Self {
        let host_data_table = ExternRefHostDataTable::default();
        let func_ref_table = FuncRefTable::default();
        Self {
            allocation_index,
            gc_heap,
            host_data_table,
            func_ref_table,
        }
    }

    /// Perform garbage collection within this heap.
    pub fn gc(&mut self, roots: GcRootsIter<'_>) {
        let mut collection = self.gc_heap.gc(roots, &mut self.host_data_table);
        collection.collect();
    }

    /// Asynchronously perform garbage collection within this heap.
    #[cfg(feature = "async")]
    pub async fn gc_async(&mut self, roots: GcRootsIter<'_>) {
        let collection = self.gc_heap.gc(roots, &mut self.host_data_table);
        collect_async(collection).await;
    }

    /// Get the kind of the given GC reference.
    pub fn kind(&self, gc_ref: &VMGcRef) -> VMGcKind {
        debug_assert!(!gc_ref.is_i31());
        self.header(gc_ref).kind()
    }

    /// Get the header of the given GC reference.
    pub fn header(&self, gc_ref: &VMGcRef) -> &VMGcHeader {
        debug_assert!(!gc_ref.is_i31());
        self.gc_heap.header(gc_ref)
    }

    /// Clone a GC reference, calling GC write barriers as necessary.
    pub fn clone_gc_ref(&mut self, gc_ref: &VMGcRef) -> VMGcRef {
        if gc_ref.is_i31() {
            gc_ref.unchecked_copy()
        } else {
            self.gc_heap.clone_gc_ref(gc_ref)
        }
    }

    /// Write the `source` GC reference into the uninitialized `destination`
    /// slot, performing write barriers as necessary.
    pub fn init_gc_ref(
        &mut self,
        destination: &mut MaybeUninit<Option<VMGcRef>>,
        source: Option<&VMGcRef>,
    ) {
        // Initialize the destination to `None`, at which point the regular GC
        // write barrier is safe to reuse.
        let destination = destination.write(None);
        self.write_gc_ref(destination, source);
    }

    /// Write the `source` GC reference into the `destination` slot, performing
    /// write barriers as necessary.
    pub fn write_gc_ref(&mut self, destination: &mut Option<VMGcRef>, source: Option<&VMGcRef>) {
        // If neither the source nor destination actually point to a GC object
        // (that is, they are both either null or `i31ref`s) then we can skip
        // the GC barrier.
        if destination.as_ref().map_or(true, |d| d.is_i31())
            && source.as_ref().map_or(true, |s| s.is_i31())
        {
            *destination = source.map(|s| s.unchecked_copy());
            return;
        }

        self.gc_heap
            .write_gc_ref(&mut self.host_data_table, destination, source);
    }

    /// Drop the given GC reference, performing drop barriers as necessary.
    pub fn drop_gc_ref(&mut self, gc_ref: VMGcRef) {
        if !gc_ref.is_i31() {
            self.gc_heap.drop_gc_ref(&mut self.host_data_table, gc_ref);
        }
    }

    /// Hook to call whenever a GC reference is about to be exposed to Wasm.
    pub fn expose_gc_ref_to_wasm(&mut self, gc_ref: VMGcRef) {
        if !gc_ref.is_i31() {
            log::trace!("exposing GC ref to Wasm: {gc_ref:p}");
            self.gc_heap.expose_gc_ref_to_wasm(gc_ref);
        }
    }

    /// Allocate a new `externref`.
    ///
    /// Returns:
    ///
    /// * `Ok(Ok(_))`: Successfully allocated the `externref`.
    ///
    /// * `Ok(Err(value))`: Failed to allocate the `externref`, but doing a GC
    ///   and then trying again may succeed. Returns the given `value` as the
    ///   error payload.
    ///
    /// * `Err(_)`: Unrecoverable allocation failure.
    pub fn alloc_externref(
        &mut self,
        value: Box<dyn Any + Send + Sync>,
    ) -> Result<Result<VMExternRef, Box<dyn Any + Send + Sync>>> {
        let host_data_id = self.host_data_table.alloc(value);
        match self.gc_heap.alloc_externref(host_data_id)? {
            #[cfg_attr(not(feature = "gc"), allow(unreachable_patterns))]
            Some(x) => Ok(Ok(x)),
            None => Ok(Err(self.host_data_table.dealloc(host_data_id))),
        }
    }

    /// Get a shared borrow of the given `externref`'s host data.
    ///
    /// Passing invalid `VMExternRef`s (eg garbage values or `externref`s
    /// associated with a different heap is memory safe but will lead to general
    /// incorrectness such as panics and wrong results.
    pub fn externref_host_data(&self, externref: &VMExternRef) -> &(dyn Any + Send + Sync) {
        let host_data_id = self.gc_heap.externref_host_data(externref);
        self.host_data_table.get(host_data_id)
    }

    /// Get a mutable borrow of the given `externref`'s host data.
    ///
    /// Passing invalid `VMExternRef`s (eg garbage values or `externref`s
    /// associated with a different heap is memory safe but will lead to general
    /// incorrectness such as panics and wrong results.
    pub fn externref_host_data_mut(
        &mut self,
        externref: &VMExternRef,
    ) -> &mut (dyn Any + Send + Sync) {
        let host_data_id = self.gc_heap.externref_host_data(externref);
        self.host_data_table.get_mut(host_data_id)
    }

    /// Allocate a raw object with the given header and layout.
    pub fn alloc_raw(&mut self, header: VMGcHeader, layout: Layout) -> Result<Option<VMGcRef>> {
        self.gc_heap.alloc_raw(header, layout)
    }

    /// Allocate an uninitialized struct with the given type index and layout.
    ///
    /// This does NOT check that the index is currently allocated in the types
    /// registry or that the layout matches the index's type. Failure to uphold
    /// those invariants is memory safe, but will lead to general incorrectness
    /// such as panics and wrong results.
    pub fn alloc_uninit_struct(
        &mut self,
        ty: VMSharedTypeIndex,
        layout: &GcStructLayout,
    ) -> Result<Option<VMStructRef>> {
        self.gc_heap.alloc_uninit_struct(ty, layout)
    }

    /// Deallocate an uninitialized struct.
    pub fn dealloc_uninit_struct(&mut self, structref: VMStructRef) {
        self.gc_heap.dealloc_uninit_struct(structref);
    }

    /// Get the data for the given object reference.
    ///
    /// Panics when the structref and its size is out of the GC heap bounds.
    pub fn gc_object_data(&mut self, gc_ref: &VMGcRef) -> VMGcObjectDataMut<'_> {
        self.gc_heap.gc_object_data(gc_ref)
    }

    /// Get the object datas for the given pair of object references.
    ///
    /// Panics if `a` and `b` are the same reference or either is out of bounds.
    pub fn gc_object_data_pair(
        &mut self,
        a: &VMGcRef,
        b: &VMGcRef,
    ) -> (VMGcObjectDataMut<'_>, VMGcObjectDataMut<'_>) {
        assert_ne!(a, b);
        self.gc_heap.gc_object_data_pair(a, b)
    }

    /// Allocate an uninitialized array with the given type index.
    ///
    /// This does NOT check that the index is currently allocated in the types
    /// registry or that the layout matches the index's type. Failure to uphold
    /// those invariants is memory safe, but will lead to general incorrectness
    /// such as panics and wrong results.
    pub fn alloc_uninit_array(
        &mut self,
        ty: VMSharedTypeIndex,
        len: u32,
        layout: &GcArrayLayout,
    ) -> Result<Option<VMArrayRef>> {
        self.gc_heap.alloc_uninit_array(ty, len, layout)
    }

    /// Deallocate an uninitialized array.
    pub fn dealloc_uninit_array(&mut self, arrayref: VMArrayRef) {
        self.gc_heap.dealloc_uninit_array(arrayref);
    }

    /// Get the length of the given array.
    pub fn array_len(&self, arrayref: &VMArrayRef) -> u32 {
        self.gc_heap.array_len(arrayref)
    }
}