1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
use alloc::boxed::Box;
use alloc::vec;
use alloc::vec::Vec;
use core::fmt;

use zeroize::Zeroize;

use crate::common_state::{CommonState, Side};
use crate::conn::ConnectionRandoms;
use crate::crypto;
use crate::crypto::cipher::{AeadKey, MessageDecrypter, MessageEncrypter, Tls12AeadAlgorithm};
use crate::crypto::hash;
use crate::enums::{AlertDescription, SignatureScheme};
use crate::error::{Error, InvalidMessage};
use crate::msgs::codec::{Codec, Reader};
use crate::msgs::handshake::{KeyExchangeAlgorithm, KxDecode};
use crate::suites::{CipherSuiteCommon, PartiallyExtractedSecrets, SupportedCipherSuite};

/// A TLS 1.2 cipher suite supported by rustls.
pub struct Tls12CipherSuite {
    /// Common cipher suite fields.
    pub common: CipherSuiteCommon,

    /// How to compute the TLS1.2 PRF for the suite's hash function.
    ///
    /// If you have a TLS1.2 PRF implementation, you should directly implement the [`crypto::tls12::Prf`] trait.
    ///
    /// If not, you can implement the [`crypto::hmac::Hmac`] trait (and associated), and then use
    /// [`crypto::tls12::PrfUsingHmac`].
    pub prf_provider: &'static dyn crypto::tls12::Prf,

    /// How to exchange/agree keys.
    ///
    /// In TLS1.2, the key exchange method (eg, Elliptic Curve Diffie-Hellman with Ephemeral keys -- ECDHE)
    /// is baked into the cipher suite, but the details to achieve it are negotiated separately.
    ///
    /// This controls how protocol messages (like the `ClientKeyExchange` message) are interpreted
    /// once this cipher suite has been negotiated.
    pub kx: KeyExchangeAlgorithm,

    /// How to sign messages for authentication.
    ///
    /// This is a set of [`SignatureScheme`]s that are usable once this cipher suite has been
    /// negotiated.
    ///
    /// The precise scheme used is then chosen from this set by the selected authentication key.
    pub sign: &'static [SignatureScheme],

    /// How to produce a [`MessageDecrypter`] or [`MessageEncrypter`]
    /// from raw key material.
    pub aead_alg: &'static dyn Tls12AeadAlgorithm,
}

impl Tls12CipherSuite {
    /// Resolve the set of supported [`SignatureScheme`]s from the
    /// offered signature schemes.  If we return an empty
    /// set, the handshake terminates.
    pub fn resolve_sig_schemes(&self, offered: &[SignatureScheme]) -> Vec<SignatureScheme> {
        self.sign
            .iter()
            .filter(|pref| offered.contains(pref))
            .cloned()
            .collect()
    }

    /// Return `true` if this is backed by a FIPS-approved implementation.
    ///
    /// This means all the constituent parts that do cryptography return `true` for `fips()`.
    pub fn fips(&self) -> bool {
        self.common.fips() && self.prf_provider.fips() && self.aead_alg.fips()
    }
}

impl From<&'static Tls12CipherSuite> for SupportedCipherSuite {
    fn from(s: &'static Tls12CipherSuite) -> Self {
        Self::Tls12(s)
    }
}

impl PartialEq for Tls12CipherSuite {
    fn eq(&self, other: &Self) -> bool {
        self.common.suite == other.common.suite
    }
}

impl fmt::Debug for Tls12CipherSuite {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Tls12CipherSuite")
            .field("suite", &self.common.suite)
            .finish()
    }
}

/// TLS1.2 per-connection keying material
pub(crate) struct ConnectionSecrets {
    pub(crate) randoms: ConnectionRandoms,
    suite: &'static Tls12CipherSuite,
    pub(crate) master_secret: [u8; 48],
}

impl ConnectionSecrets {
    pub(crate) fn from_key_exchange(
        kx: Box<dyn crypto::ActiveKeyExchange>,
        peer_pub_key: &[u8],
        ems_seed: Option<hash::Output>,
        randoms: ConnectionRandoms,
        suite: &'static Tls12CipherSuite,
    ) -> Result<Self, Error> {
        let mut ret = Self {
            randoms,
            suite,
            master_secret: [0u8; 48],
        };

        let (label, seed) = match ems_seed {
            Some(seed) => ("extended master secret", Seed::Ems(seed)),
            None => (
                "master secret",
                Seed::Randoms(join_randoms(&ret.randoms.client, &ret.randoms.server)),
            ),
        };

        // The API contract for for_key_exchange is that the caller guarantees `label` and `seed`
        // slice parameters are non-empty.
        // `label` is guaranteed non-empty because it's assigned from a `&str` above.
        // `seed.as_ref()` is guaranteed non-empty by documentation on the AsRef impl.
        ret.suite
            .prf_provider
            .for_key_exchange(
                &mut ret.master_secret,
                kx,
                peer_pub_key,
                label.as_bytes(),
                seed.as_ref(),
            )?;

        Ok(ret)
    }

    pub(crate) fn new_resume(
        randoms: ConnectionRandoms,
        suite: &'static Tls12CipherSuite,
        master_secret: &[u8],
    ) -> Self {
        let mut ret = Self {
            randoms,
            suite,
            master_secret: [0u8; 48],
        };
        ret.master_secret
            .copy_from_slice(master_secret);
        ret
    }

    /// Make a `MessageCipherPair` based on the given supported ciphersuite `self.suite`,
    /// and the session's `secrets`.
    pub(crate) fn make_cipher_pair(&self, side: Side) -> MessageCipherPair {
        // Make a key block, and chop it up.
        // Note: we don't implement any ciphersuites with nonzero mac_key_len.
        let key_block = self.make_key_block();
        let shape = self.suite.aead_alg.key_block_shape();

        let (client_write_key, key_block) = key_block.split_at(shape.enc_key_len);
        let (server_write_key, key_block) = key_block.split_at(shape.enc_key_len);
        let (client_write_iv, key_block) = key_block.split_at(shape.fixed_iv_len);
        let (server_write_iv, extra) = key_block.split_at(shape.fixed_iv_len);

        let (write_key, write_iv, read_key, read_iv) = match side {
            Side::Client => (
                client_write_key,
                client_write_iv,
                server_write_key,
                server_write_iv,
            ),
            Side::Server => (
                server_write_key,
                server_write_iv,
                client_write_key,
                client_write_iv,
            ),
        };

        (
            self.suite
                .aead_alg
                .decrypter(AeadKey::new(read_key), read_iv),
            self.suite
                .aead_alg
                .encrypter(AeadKey::new(write_key), write_iv, extra),
        )
    }

    fn make_key_block(&self) -> Vec<u8> {
        let shape = self.suite.aead_alg.key_block_shape();

        let len = (shape.enc_key_len + shape.fixed_iv_len) * 2 + shape.explicit_nonce_len;

        let mut out = vec![0u8; len];

        // NOTE: opposite order to above for no good reason.
        // Don't design security protocols on drugs, kids.
        let randoms = join_randoms(&self.randoms.server, &self.randoms.client);
        self.suite.prf_provider.for_secret(
            &mut out,
            &self.master_secret,
            b"key expansion",
            &randoms,
        );

        out
    }

    pub(crate) fn suite(&self) -> &'static Tls12CipherSuite {
        self.suite
    }

    pub(crate) fn master_secret(&self) -> &[u8] {
        &self.master_secret[..]
    }

    fn make_verify_data(&self, handshake_hash: &hash::Output, label: &[u8]) -> Vec<u8> {
        let mut out = vec![0u8; 12];

        self.suite.prf_provider.for_secret(
            &mut out,
            &self.master_secret,
            label,
            handshake_hash.as_ref(),
        );

        out
    }

    pub(crate) fn client_verify_data(&self, handshake_hash: &hash::Output) -> Vec<u8> {
        self.make_verify_data(handshake_hash, b"client finished")
    }

    pub(crate) fn server_verify_data(&self, handshake_hash: &hash::Output) -> Vec<u8> {
        self.make_verify_data(handshake_hash, b"server finished")
    }

    pub(crate) fn export_keying_material(
        &self,
        output: &mut [u8],
        label: &[u8],
        context: Option<&[u8]>,
    ) {
        let mut randoms = Vec::new();
        randoms.extend_from_slice(&self.randoms.client);
        randoms.extend_from_slice(&self.randoms.server);
        if let Some(context) = context {
            assert!(context.len() <= 0xffff);
            (context.len() as u16).encode(&mut randoms);
            randoms.extend_from_slice(context);
        }

        self.suite
            .prf_provider
            .for_secret(output, &self.master_secret, label, &randoms);
    }

    pub(crate) fn extract_secrets(&self, side: Side) -> Result<PartiallyExtractedSecrets, Error> {
        // Make a key block, and chop it up
        let key_block = self.make_key_block();
        let shape = self.suite.aead_alg.key_block_shape();

        let (client_key, key_block) = key_block.split_at(shape.enc_key_len);
        let (server_key, key_block) = key_block.split_at(shape.enc_key_len);
        let (client_iv, key_block) = key_block.split_at(shape.fixed_iv_len);
        let (server_iv, explicit_nonce) = key_block.split_at(shape.fixed_iv_len);

        let client_secrets = self.suite.aead_alg.extract_keys(
            AeadKey::new(client_key),
            client_iv,
            explicit_nonce,
        )?;
        let server_secrets = self.suite.aead_alg.extract_keys(
            AeadKey::new(server_key),
            server_iv,
            explicit_nonce,
        )?;

        let (tx, rx) = match side {
            Side::Client => (client_secrets, server_secrets),
            Side::Server => (server_secrets, client_secrets),
        };
        Ok(PartiallyExtractedSecrets { tx, rx })
    }
}

impl Drop for ConnectionSecrets {
    fn drop(&mut self) {
        self.master_secret.zeroize();
    }
}

enum Seed {
    Ems(hash::Output),
    Randoms([u8; 64]),
}

impl AsRef<[u8]> for Seed {
    /// This is guaranteed to return a non-empty slice.
    fn as_ref(&self) -> &[u8] {
        match self {
            // seed is a hash::Output, which is a fixed, non-zero length array.
            Self::Ems(seed) => seed.as_ref(),
            // randoms is a fixed, non-zero length array.
            Self::Randoms(randoms) => randoms.as_ref(),
        }
    }
}

fn join_randoms(first: &[u8; 32], second: &[u8; 32]) -> [u8; 64] {
    let mut randoms = [0u8; 64];
    randoms[..32].copy_from_slice(first);
    randoms[32..].copy_from_slice(second);
    randoms
}

type MessageCipherPair = (Box<dyn MessageDecrypter>, Box<dyn MessageEncrypter>);

pub(crate) fn decode_kx_params<'a, T: KxDecode<'a>>(
    kx_algorithm: KeyExchangeAlgorithm,
    common: &mut CommonState,
    kx_params: &'a [u8],
) -> Result<T, Error> {
    let mut rd = Reader::init(kx_params);
    let kx_params = T::decode(&mut rd, kx_algorithm)?;
    match rd.any_left() {
        false => Ok(kx_params),
        true => Err(common.send_fatal_alert(
            AlertDescription::DecodeError,
            InvalidMessage::InvalidDhParams,
        )),
    }
}

pub(crate) const DOWNGRADE_SENTINEL: [u8; 8] = [0x44, 0x4f, 0x57, 0x4e, 0x47, 0x52, 0x44, 0x01];

test_for_each_provider! {
    use super::*;
    use crate::common_state::{CommonState, Side};
    use crate::msgs::handshake::{ServerEcdhParams, ServerKeyExchangeParams};
    use provider::kx_group::X25519;

    #[test]
    fn server_ecdhe_remaining_bytes() {
        let key = X25519.start().unwrap();
        let server_params = ServerEcdhParams::new(&*key);
        let mut server_buf = Vec::new();
        server_params.encode(&mut server_buf);
        server_buf.push(34);

        let mut common = CommonState::new(Side::Client);
        assert!(decode_kx_params::<ServerKeyExchangeParams>(
            KeyExchangeAlgorithm::ECDHE,
            &mut common,
            &server_buf
        )
        .is_err());
    }

    #[test]
    fn client_ecdhe_invalid() {
        let mut common = CommonState::new(Side::Server);
        assert!(decode_kx_params::<ServerKeyExchangeParams>(
            KeyExchangeAlgorithm::ECDHE,
            &mut common,
            &[34],
        )
        .is_err());
    }
}