wasmtime_cranelift/gc/enabled/drc.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
//! Compiler for the deferred reference-counting (DRC) collector and its
//! barriers.
use super::*;
use crate::gc::gc_compiler;
use crate::translate::TargetEnvironment;
use crate::{func_environ::FuncEnvironment, gc::GcCompiler, TRAP_INTERNAL_ASSERT};
use cranelift_codegen::ir::condcodes::IntCC;
use cranelift_codegen::ir::{self, InstBuilder};
use cranelift_frontend::FunctionBuilder;
use smallvec::SmallVec;
use wasmtime_environ::{
drc::DrcTypeLayouts, GcTypeLayouts, ModuleInternedTypeIndex, PtrSize, TypeIndex, VMGcKind,
WasmHeapTopType, WasmHeapType, WasmRefType, WasmResult, WasmStorageType, WasmValType,
};
#[derive(Default)]
pub struct DrcCompiler {
layouts: DrcTypeLayouts,
}
impl DrcCompiler {
/// Generate code to load the given GC reference's ref count.
///
/// Assumes that the given `gc_ref` is a non-null, non-i31 GC reference.
fn load_ref_count(
&mut self,
func_env: &mut FuncEnvironment<'_>,
builder: &mut FunctionBuilder,
gc_ref: ir::Value,
) -> ir::Value {
let offset = func_env.offsets.vm_drc_header_ref_count();
let pointer = func_env.prepare_gc_ref_access(
builder,
gc_ref,
Offset::Static(offset),
BoundsCheck::Access(ir::types::I64.bytes()),
);
builder
.ins()
.load(ir::types::I64, ir::MemFlags::trusted(), pointer, 0)
}
/// Generate code to update the given GC reference's ref count to the new
/// value.
///
/// Assumes that the given `gc_ref` is a non-null, non-i31 GC reference.
fn store_ref_count(
&mut self,
func_env: &mut FuncEnvironment<'_>,
builder: &mut FunctionBuilder,
gc_ref: ir::Value,
new_ref_count: ir::Value,
) {
let offset = func_env.offsets.vm_drc_header_ref_count();
let pointer = func_env.prepare_gc_ref_access(
builder,
gc_ref,
Offset::Static(offset),
BoundsCheck::Access(ir::types::I64.bytes()),
);
builder
.ins()
.store(ir::MemFlags::trusted(), new_ref_count, pointer, 0);
}
/// Generate code to increment or decrement the given GC reference's ref
/// count.
///
/// The new ref count is returned.
///
/// Assumes that the given `gc_ref` is a non-null, non-i31 GC reference.
fn mutate_ref_count(
&mut self,
func_env: &mut FuncEnvironment<'_>,
builder: &mut FunctionBuilder,
gc_ref: ir::Value,
delta: i64,
) -> ir::Value {
debug_assert!(delta == -1 || delta == 1);
let old_ref_count = self.load_ref_count(func_env, builder, gc_ref);
let new_ref_count = builder.ins().iadd_imm(old_ref_count, delta);
self.store_ref_count(func_env, builder, gc_ref, new_ref_count);
new_ref_count
}
/// Load the `*mut VMGcRefActivationsTable` from the vmctx, its `next` bump
/// finger, and its `end` bump boundary.
fn load_bump_region(
&mut self,
func_env: &mut FuncEnvironment<'_>,
builder: &mut FunctionBuilder,
) -> (ir::Value, ir::Value, ir::Value) {
let ptr_ty = func_env.pointer_type();
let vmctx = func_env.vmctx(&mut builder.func);
let vmctx = builder.ins().global_value(ptr_ty, vmctx);
let activations_table = builder.ins().load(
ptr_ty,
ir::MemFlags::trusted().with_readonly(),
vmctx,
i32::from(func_env.offsets.ptr.vmctx_gc_heap_data()),
);
let next = builder.ins().load(
ptr_ty,
ir::MemFlags::trusted(),
activations_table,
i32::try_from(func_env.offsets.vm_gc_ref_activation_table_next()).unwrap(),
);
let end = builder.ins().load(
ptr_ty,
ir::MemFlags::trusted(),
activations_table,
i32::try_from(func_env.offsets.vm_gc_ref_activation_table_end()).unwrap(),
);
(activations_table, next, end)
}
/// Write to an uninitialized field or element inside a GC object.
fn init_field(
&mut self,
func_env: &mut FuncEnvironment<'_>,
builder: &mut FunctionBuilder<'_>,
field_addr: ir::Value,
ty: WasmStorageType,
val: ir::Value,
) -> WasmResult<()> {
// Data inside GC objects is always little endian.
let flags = ir::MemFlags::trusted().with_endianness(ir::Endianness::Little);
match ty {
WasmStorageType::Val(WasmValType::Ref(r))
if r.heap_type.top() == WasmHeapTopType::Func =>
{
write_func_ref_at_addr(func_env, builder, r, flags, field_addr, val)?;
}
WasmStorageType::Val(WasmValType::Ref(r)) => {
self.translate_init_gc_reference(func_env, builder, r, field_addr, val, flags)?;
}
WasmStorageType::I8 => {
assert_eq!(builder.func.dfg.value_type(val), ir::types::I32);
builder.ins().istore8(flags, val, field_addr, 0);
}
WasmStorageType::I16 => {
assert_eq!(builder.func.dfg.value_type(val), ir::types::I32);
builder.ins().istore16(flags, val, field_addr, 0);
}
WasmStorageType::Val(_) => {
let size_of_access = wasmtime_environ::byte_size_of_wasm_ty_in_gc_heap(&ty);
assert_eq!(builder.func.dfg.value_type(val).bytes(), size_of_access);
builder.ins().store(flags, val, field_addr, 0);
}
}
Ok(())
}
/// Write to an uninitialized GC reference field, initializing it.
///
/// ```text
/// *dst = new_val
/// ```
///
/// Doesn't need to do a full write barrier: we don't have an old reference
/// that is being overwritten and needs its refcount decremented, just a new
/// reference whose count should be incremented.
fn translate_init_gc_reference(
&mut self,
func_env: &mut FuncEnvironment<'_>,
builder: &mut FunctionBuilder,
ty: WasmRefType,
dst: ir::Value,
new_val: ir::Value,
flags: ir::MemFlags,
) -> WasmResult<()> {
let (ref_ty, needs_stack_map) = func_env.reference_type(ty.heap_type);
debug_assert!(needs_stack_map);
// Special case for references to uninhabited bottom types: see
// `translate_write_gc_reference` for details.
if let WasmHeapType::None = ty.heap_type {
if ty.nullable {
let null = builder.ins().iconst(ref_ty, 0);
builder.ins().store(flags, null, dst, 0);
} else {
let zero = builder.ins().iconst(ir::types::I32, 0);
builder.ins().trapz(zero, TRAP_INTERNAL_ASSERT);
}
return Ok(());
};
// Special case for `i31ref`s: no need for any barriers.
if let WasmHeapType::I31 = ty.heap_type {
return unbarriered_store_gc_ref(builder, ty.heap_type, dst, new_val, flags);
}
// Our initialization barrier for GC references being copied out of the
// stack and initializing a table/global/struct field/etc... is roughly
// equivalent to the following pseudo-CLIF:
//
// ```
// current_block:
// ...
// let new_val_is_null_or_i31 = ...
// brif new_val_is_null_or_i31, continue_block, inc_ref_block
//
// inc_ref_block:
// let ref_count = load new_val.ref_count
// let new_ref_count = iadd_imm ref_count, 1
// store new_val.ref_count, new_ref_count
// jump check_old_val_block
//
// continue_block:
// store dst, new_val
// ...
// ```
//
// This write barrier is responsible for ensuring that the new value's
// ref count is incremented now that the table/global/struct/etc... is
// holding onto it.
let current_block = builder.current_block().unwrap();
let inc_ref_block = builder.create_block();
let continue_block = builder.create_block();
builder.ensure_inserted_block();
builder.insert_block_after(inc_ref_block, current_block);
builder.insert_block_after(continue_block, inc_ref_block);
// Current block: check whether the new value is non-null and
// non-i31. If so, branch to the `inc_ref_block`.
log::trace!("DRC initialization barrier: check if the value is null or i31");
let new_val_is_null_or_i31 = func_env.gc_ref_is_null_or_i31(builder, ty, new_val);
builder.ins().brif(
new_val_is_null_or_i31,
continue_block,
&[],
inc_ref_block,
&[],
);
// Block to increment the ref count of the new value when it is non-null
// and non-i31.
builder.switch_to_block(inc_ref_block);
builder.seal_block(inc_ref_block);
log::trace!("DRC initialization barrier: increment the ref count of the initial value");
self.mutate_ref_count(func_env, builder, new_val, 1);
builder.ins().jump(continue_block, &[]);
// Join point after we're done with the GC barrier: do the actual store
// to initialize the field.
builder.switch_to_block(continue_block);
builder.seal_block(continue_block);
log::trace!(
"DRC initialization barrier: finally, store into {dst:?} to initialize the field"
);
unbarriered_store_gc_ref(builder, ty.heap_type, dst, new_val, flags)?;
Ok(())
}
}
/// Emit CLIF to call the `gc_raw_alloc` libcall.
///
/// It is the caller's responsibility to ensure that `size` fits within the
/// `VMGcKind`'s unused bits.
fn emit_gc_raw_alloc(
func_env: &mut FuncEnvironment<'_>,
builder: &mut FunctionBuilder<'_>,
kind: VMGcKind,
ty: ModuleInternedTypeIndex,
size: ir::Value,
align: u32,
) -> ir::Value {
let gc_alloc_raw_builtin = func_env.builtin_functions.gc_alloc_raw(builder.func);
let vmctx = func_env.vmctx_val(&mut builder.cursor());
let kind = builder
.ins()
.iconst(ir::types::I32, i64::from(kind.as_u32()));
let ty = builder.ins().iconst(ir::types::I32, i64::from(ty.as_u32()));
assert!(align.is_power_of_two());
let align = builder.ins().iconst(ir::types::I32, i64::from(align));
let call_inst = builder
.ins()
.call(gc_alloc_raw_builtin, &[vmctx, kind, ty, size, align]);
let gc_ref = builder.func.dfg.first_result(call_inst);
let gc_ref = builder.ins().ireduce(ir::types::I32, gc_ref);
builder.declare_value_needs_stack_map(gc_ref);
gc_ref
}
impl GcCompiler for DrcCompiler {
fn layouts(&self) -> &dyn GcTypeLayouts {
&self.layouts
}
fn alloc_array(
&mut self,
func_env: &mut FuncEnvironment<'_>,
builder: &mut FunctionBuilder<'_>,
array_type_index: TypeIndex,
init: super::ArrayInit<'_>,
) -> WasmResult<ir::Value> {
let interned_type_index =
func_env.module.types[array_type_index].unwrap_module_type_index();
let ptr_ty = func_env.pointer_type();
let len_offset = gc_compiler(func_env)?.layouts().array_length_field_offset();
let array_layout = func_env.array_layout(interned_type_index).clone();
let base_size = array_layout.base_size;
let align = array_layout.align;
let len_to_elems_delta = base_size.checked_sub(len_offset).unwrap();
// First, compute the array's total size from its base size, element
// size, and length.
let size = emit_array_size(func_env, builder, &array_layout, init);
// Second, now that we have the array object's total size, call the
// `gc_alloc_raw` builtin libcall to allocate the array.
let array_ref = emit_gc_raw_alloc(
func_env,
builder,
VMGcKind::ArrayRef,
interned_type_index,
size,
align,
);
// Write the array's length into the appropriate slot.
//
// Note: we don't need to bounds-check the GC ref access here, since we
// trust the results of the allocation libcall.
let base = func_env.get_gc_heap_base(builder);
let extended_array_ref =
uextend_i32_to_pointer_type(builder, func_env.pointer_type(), array_ref);
let object_addr = builder.ins().iadd(base, extended_array_ref);
let len_addr = builder.ins().iadd_imm(object_addr, i64::from(len_offset));
let len = init.len(&mut builder.cursor());
builder
.ins()
.store(ir::MemFlags::trusted(), len, len_addr, 0);
// Finally, initialize the elements.
let len_to_elems_delta = builder.ins().iconst(ptr_ty, i64::from(len_to_elems_delta));
let elems_addr = builder.ins().iadd(len_addr, len_to_elems_delta);
init.initialize(
func_env,
builder,
interned_type_index,
base_size,
size,
elems_addr,
|func_env, builder, elem_ty, elem_addr, val| {
self.init_field(func_env, builder, elem_addr, elem_ty, val)
},
)?;
Ok(array_ref)
}
fn alloc_struct(
&mut self,
func_env: &mut FuncEnvironment<'_>,
builder: &mut FunctionBuilder<'_>,
struct_type_index: TypeIndex,
field_vals: &[ir::Value],
) -> WasmResult<ir::Value> {
// First, call the `gc_alloc_raw` builtin libcall to allocate the
// struct.
let interned_type_index =
func_env.module.types[struct_type_index].unwrap_module_type_index();
let struct_layout = func_env.struct_layout(interned_type_index);
// Copy some stuff out of the struct layout to avoid borrowing issues.
let struct_size = struct_layout.size;
let struct_align = struct_layout.align;
let field_offsets: SmallVec<[_; 8]> = struct_layout.fields.iter().copied().collect();
assert_eq!(field_vals.len(), field_offsets.len());
assert_eq!(VMGcKind::MASK & struct_size, 0);
assert_eq!(VMGcKind::UNUSED_MASK & struct_size, struct_size);
let struct_size_val = builder.ins().iconst(ir::types::I32, i64::from(struct_size));
let struct_ref = emit_gc_raw_alloc(
func_env,
builder,
VMGcKind::StructRef,
interned_type_index,
struct_size_val,
struct_align,
);
// Second, initialize each of the newly-allocated struct's fields.
//
// Note: we don't need to bounds-check the GC ref access here, since we
// trust the results of the allocation libcall.
let base = func_env.get_gc_heap_base(builder);
let extended_struct_ref =
uextend_i32_to_pointer_type(builder, func_env.pointer_type(), struct_ref);
let raw_ptr_to_struct = builder.ins().iadd(base, extended_struct_ref);
initialize_struct_fields(
func_env,
builder,
interned_type_index,
raw_ptr_to_struct,
field_vals,
|func_env, builder, ty, field_addr, val| {
self.init_field(func_env, builder, field_addr, ty, val)
},
)?;
Ok(struct_ref)
}
fn translate_read_gc_reference(
&mut self,
func_env: &mut FuncEnvironment<'_>,
builder: &mut FunctionBuilder,
ty: WasmRefType,
src: ir::Value,
flags: ir::MemFlags,
) -> WasmResult<ir::Value> {
log::trace!("translate_read_gc_reference({ty:?}, {src:?}, {flags:?})");
assert!(ty.is_vmgcref_type());
let (reference_type, needs_stack_map) = func_env.reference_type(ty.heap_type);
debug_assert!(needs_stack_map);
// Special case for references to uninhabited bottom types: the
// reference must either be nullable and we can just eagerly return
// null, or we are in dynamically unreachable code and should just trap.
if let WasmHeapType::None = ty.heap_type {
let null = builder.ins().iconst(reference_type, 0);
if !ty.nullable {
// NB: Don't use an unconditional trap instruction, since that
// is a block terminator, and we still need to integrate with
// the rest of the surrounding code.
let zero = builder.ins().iconst(ir::types::I32, 0);
builder.ins().trapz(zero, TRAP_INTERNAL_ASSERT);
}
return Ok(null);
};
// Special case for `i31` references: they don't need barriers.
if let WasmHeapType::I31 = ty.heap_type {
return unbarriered_load_gc_ref(builder, ty.heap_type, src, flags);
}
// Our read barrier for GC references is roughly equivalent to the
// following pseudo-CLIF:
//
// ```
// current_block:
// ...
// let gc_ref = load src
// let gc_ref_is_null = is_null gc_ref
// let gc_ref_is_i31 = ...
// let gc_ref_is_null_or_i31 = bor gc_ref_is_null, gc_ref_is_i31
// brif gc_ref_is_null_or_i31, continue_block, non_null_gc_ref_block
//
// non_null_gc_ref_block:
// let (next, end) = load VMGcRefActivationsTable bump region
// let bump_region_is_full = icmp eq next, end
// brif bump_region_is_full, gc_block, no_gc_block
//
// no_gc_block:
// let ref_count = load gc_ref.ref_count
// let new_ref_count = iadd_imm ref_count, 1
// store new_ref_count, gc_ref.ref_count
// let new_next = iadd_imm next, size_of(reference_type)
// store new_next, activations_table.next
// jump continue_block
//
// cold gc_block:
// ;; NB: The DRC collector is not a moving GC, so we can reuse
// ;; `gc_ref`. This lets us avoid a block parameter for the
// ;; `continue_block`.
// let _moved_gc_ref = call gc(gc_ref)
// jump continue_block
//
// continue_block:
// ...
// ```
//
// This ensures that all GC references entering the Wasm stack are held
// alive by the `VMGcRefActivationsTable`.
let current_block = builder.current_block().unwrap();
let non_null_gc_ref_block = builder.create_block();
let gc_block = builder.create_block();
let no_gc_block = builder.create_block();
let continue_block = builder.create_block();
builder.set_cold_block(gc_block);
builder.ensure_inserted_block();
builder.insert_block_after(non_null_gc_ref_block, current_block);
builder.insert_block_after(no_gc_block, non_null_gc_ref_block);
builder.insert_block_after(gc_block, no_gc_block);
builder.insert_block_after(continue_block, gc_block);
log::trace!("DRC read barrier: load the gc reference and check for null or i31");
let gc_ref = unbarriered_load_gc_ref(builder, ty.heap_type, src, flags)?;
let gc_ref_is_null_or_i31 = func_env.gc_ref_is_null_or_i31(builder, ty, gc_ref);
builder.ins().brif(
gc_ref_is_null_or_i31,
continue_block,
&[],
non_null_gc_ref_block,
&[],
);
// Block for when the GC reference is not null and is not an `i31ref`.
//
// Load the `VMGcRefActivationsTable::next` bump finger and the
// `VMGcRefActivationsTable::end` bump boundary and check whether the
// bump region is full or not.
builder.switch_to_block(non_null_gc_ref_block);
builder.seal_block(non_null_gc_ref_block);
log::trace!("DRC read barrier: load bump region and check capacity");
let (activations_table, next, end) = self.load_bump_region(func_env, builder);
let bump_region_is_full = builder.ins().icmp(IntCC::Equal, next, end);
builder
.ins()
.brif(bump_region_is_full, gc_block, &[], no_gc_block, &[]);
// Block for when the bump region is not full. We should:
//
// * increment this reference's ref count,
// * store the reference into the bump table at `*next`,
// * and finally increment the `next` bump finger.
builder.switch_to_block(no_gc_block);
builder.seal_block(no_gc_block);
log::trace!("DRC read barrier: increment ref count and inline insert into bump region");
self.mutate_ref_count(func_env, builder, gc_ref, 1);
builder
.ins()
.store(ir::MemFlags::trusted(), gc_ref, next, 0);
let new_next = builder
.ins()
.iadd_imm(next, i64::from(reference_type.bytes()));
builder.ins().store(
ir::MemFlags::trusted(),
new_next,
activations_table,
i32::try_from(func_env.offsets.vm_gc_ref_activation_table_next()).unwrap(),
);
builder.ins().jump(continue_block, &[]);
// Block for when the bump region is full and we need to do a GC.
builder.switch_to_block(gc_block);
builder.seal_block(gc_block);
log::trace!("DRC read barrier: slow path for when the bump region is full; do a gc");
let gc_libcall = func_env.builtin_functions.gc(builder.func);
let vmctx = func_env.vmctx_val(&mut builder.cursor());
builder.ins().call(gc_libcall, &[vmctx, gc_ref]);
builder.ins().jump(continue_block, &[]);
// Join point after we're done with the GC barrier.
builder.switch_to_block(continue_block);
builder.seal_block(continue_block);
log::trace!("translate_read_gc_reference(..) -> {gc_ref:?}");
Ok(gc_ref)
}
fn translate_write_gc_reference(
&mut self,
func_env: &mut FuncEnvironment<'_>,
builder: &mut FunctionBuilder,
ty: WasmRefType,
dst: ir::Value,
new_val: ir::Value,
flags: ir::MemFlags,
) -> WasmResult<()> {
assert!(ty.is_vmgcref_type());
let (ref_ty, needs_stack_map) = func_env.reference_type(ty.heap_type);
debug_assert!(needs_stack_map);
// Special case for references to uninhabited bottom types: either the
// reference must either be nullable and we can just eagerly store null
// into `dst`, or we are in unreachable code and should just trap.
if let WasmHeapType::None = ty.heap_type {
if ty.nullable {
let null = builder.ins().iconst(ref_ty, 0);
builder.ins().store(flags, null, dst, 0);
} else {
// NB: Don't use an unconditional trap instruction, since that
// is a block terminator, and we still need to integrate with
// the rest of the surrounding code.
let zero = builder.ins().iconst(ir::types::I32, 0);
builder.ins().trapz(zero, TRAP_INTERNAL_ASSERT);
}
return Ok(());
};
// Special case for `i31` references: they don't need barriers.
if let WasmHeapType::I31 = ty.heap_type {
return unbarriered_store_gc_ref(builder, ty.heap_type, dst, new_val, flags);
}
// Our write barrier for GC references being copied out of the stack and
// written into a table/global/etc... is roughly equivalent to the
// following pseudo-CLIF:
//
// ```
// current_block:
// ...
// let old_val = *dst
// let new_val_is_null = ref.null new_val
// let new_val_is_i31 = ...
// let new_val_is_null_or_i31 = bor new_val_is_null, new_val_is_i31
// brif new_val_is_null_or_i31, check_old_val_block, inc_ref_block
//
// inc_ref_block:
// let ref_count = load new_val.ref_count
// let new_ref_count = iadd_imm ref_count, 1
// store new_val.ref_count, new_ref_count
// jump check_old_val_block
//
// check_old_val_block:
// store dst, new_val
// let old_val_is_null = ref.null old_val
// let old_val_is_i31 = ...
// let old_val_is_null_or_i31 = bor old_val_is_null, old_val_is_i31
// brif old_val_is_null_or_i31, continue_block, dec_ref_block
//
// dec_ref_block:
// let ref_count = load old_val.ref_count
// let new_ref_count = isub_imm ref_count, 1
// let old_val_needs_drop = icmp_imm eq new_ref_count, 0
// brif old_val_needs_drop, drop_old_val_block, store_dec_ref_block
//
// cold drop_old_val_block:
// call drop_gc_ref(old_val)
// jump continue_block
//
// store_dec_ref_block:
// store old_val.ref_count, new_ref_count
// jump continue_block
//
// continue_block:
// ...
// ```
//
// This write barrier is responsible for ensuring that:
//
// 1. The new value's ref count is incremented now that the table is
// holding onto it.
//
// 2. The old value's ref count is decremented, and that it is dropped
// if the ref count reaches zero.
//
// We must do the increment before the decrement. If we did it in the
// other order, then when `*dst == new_val`, we could confuse ourselves
// by observing a zero ref count after the decrement but before it would
// become non-zero again with the subsequent increment.
//
// Additionally, we take care that we don't ever call out-out-of-line to
// drop the old value until all the new value has been written into
// `dst` and its reference count has been updated. This makes sure that
// host code has a consistent view of the world.
let current_block = builder.current_block().unwrap();
let inc_ref_block = builder.create_block();
let check_old_val_block = builder.create_block();
let dec_ref_block = builder.create_block();
let drop_old_val_block = builder.create_block();
let store_dec_ref_block = builder.create_block();
let continue_block = builder.create_block();
builder.ensure_inserted_block();
builder.set_cold_block(drop_old_val_block);
builder.insert_block_after(inc_ref_block, current_block);
builder.insert_block_after(check_old_val_block, inc_ref_block);
builder.insert_block_after(dec_ref_block, check_old_val_block);
builder.insert_block_after(drop_old_val_block, dec_ref_block);
builder.insert_block_after(store_dec_ref_block, drop_old_val_block);
builder.insert_block_after(continue_block, store_dec_ref_block);
// Load the old value and then check whether the new value is non-null
// and non-i31.
log::trace!("DRC write barrier: load old ref; check if new ref is null or i31");
let old_val = unbarriered_load_gc_ref(builder, ty.heap_type, dst, flags)?;
let new_val_is_null_or_i31 = func_env.gc_ref_is_null_or_i31(builder, ty, new_val);
builder.ins().brif(
new_val_is_null_or_i31,
check_old_val_block,
&[],
inc_ref_block,
&[],
);
// Block to increment the ref count of the new value when it is non-null
// and non-i31.
builder.switch_to_block(inc_ref_block);
log::trace!("DRC write barrier: increment new ref's ref count");
builder.seal_block(inc_ref_block);
self.mutate_ref_count(func_env, builder, new_val, 1);
builder.ins().jump(check_old_val_block, &[]);
// Block to store the new value into `dst` and then check whether the
// old value is non-null and non-i31 and therefore needs its ref count
// decremented.
builder.switch_to_block(check_old_val_block);
builder.seal_block(check_old_val_block);
log::trace!("DRC write barrier: store new ref into field; check if old ref is null or i31");
unbarriered_store_gc_ref(builder, ty.heap_type, dst, new_val, flags)?;
let old_val_is_null_or_i31 = func_env.gc_ref_is_null_or_i31(builder, ty, old_val);
builder.ins().brif(
old_val_is_null_or_i31,
continue_block,
&[],
dec_ref_block,
&[],
);
// Block to decrement the ref count of the old value when it is non-null
// and non-i31.
builder.switch_to_block(dec_ref_block);
builder.seal_block(dec_ref_block);
log::trace!(
"DRC write barrier: decrement old ref's ref count and check for zero ref count"
);
let ref_count = self.load_ref_count(func_env, builder, old_val);
let new_ref_count = builder.ins().iadd_imm(ref_count, -1);
let old_val_needs_drop = builder.ins().icmp_imm(IntCC::Equal, new_ref_count, 0);
builder.ins().brif(
old_val_needs_drop,
drop_old_val_block,
&[],
store_dec_ref_block,
&[],
);
// Block to call out-of-line to drop a GC reference when its ref count
// reaches zero.
//
// Note that this libcall does its own dec-ref operation, so we only
// actually store `new_ref_count` back to the `old_val` object when
// `new_ref_count != 0`.
builder.switch_to_block(drop_old_val_block);
builder.seal_block(drop_old_val_block);
log::trace!("DRC write barrier: drop old ref with a ref count of zero");
let drop_gc_ref_libcall = func_env.builtin_functions.drop_gc_ref(builder.func);
let vmctx = func_env.vmctx_val(&mut builder.cursor());
builder.ins().call(drop_gc_ref_libcall, &[vmctx, old_val]);
builder.ins().jump(continue_block, &[]);
// Block to store the new ref count back to `old_val` for when
// `new_ref_count != 0`, as explained above.
builder.switch_to_block(store_dec_ref_block);
builder.seal_block(store_dec_ref_block);
log::trace!("DRC write barrier: store decremented ref count into old ref");
self.store_ref_count(func_env, builder, old_val, new_ref_count);
builder.ins().jump(continue_block, &[]);
// Join point after we're done with the GC barrier.
builder.switch_to_block(continue_block);
builder.seal_block(continue_block);
log::trace!("DRC write barrier: finished");
Ok(())
}
}