wasmtime_cranelift/gc/enabled/
drc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
//! Compiler for the deferred reference-counting (DRC) collector and its
//! barriers.

use super::*;
use crate::gc::gc_compiler;
use crate::translate::TargetEnvironment;
use crate::{func_environ::FuncEnvironment, gc::GcCompiler, TRAP_INTERNAL_ASSERT};
use cranelift_codegen::ir::condcodes::IntCC;
use cranelift_codegen::ir::{self, InstBuilder};
use cranelift_frontend::FunctionBuilder;
use smallvec::SmallVec;
use wasmtime_environ::{
    drc::DrcTypeLayouts, GcTypeLayouts, ModuleInternedTypeIndex, PtrSize, TypeIndex, VMGcKind,
    WasmHeapTopType, WasmHeapType, WasmRefType, WasmResult, WasmStorageType, WasmValType,
};

#[derive(Default)]
pub struct DrcCompiler {
    layouts: DrcTypeLayouts,
}

impl DrcCompiler {
    /// Generate code to load the given GC reference's ref count.
    ///
    /// Assumes that the given `gc_ref` is a non-null, non-i31 GC reference.
    fn load_ref_count(
        &mut self,
        func_env: &mut FuncEnvironment<'_>,
        builder: &mut FunctionBuilder,
        gc_ref: ir::Value,
    ) -> ir::Value {
        let offset = func_env.offsets.vm_drc_header_ref_count();
        let pointer = func_env.prepare_gc_ref_access(
            builder,
            gc_ref,
            Offset::Static(offset),
            BoundsCheck::Access(ir::types::I64.bytes()),
        );
        builder
            .ins()
            .load(ir::types::I64, ir::MemFlags::trusted(), pointer, 0)
    }

    /// Generate code to update the given GC reference's ref count to the new
    /// value.
    ///
    /// Assumes that the given `gc_ref` is a non-null, non-i31 GC reference.
    fn store_ref_count(
        &mut self,
        func_env: &mut FuncEnvironment<'_>,
        builder: &mut FunctionBuilder,
        gc_ref: ir::Value,
        new_ref_count: ir::Value,
    ) {
        let offset = func_env.offsets.vm_drc_header_ref_count();
        let pointer = func_env.prepare_gc_ref_access(
            builder,
            gc_ref,
            Offset::Static(offset),
            BoundsCheck::Access(ir::types::I64.bytes()),
        );
        builder
            .ins()
            .store(ir::MemFlags::trusted(), new_ref_count, pointer, 0);
    }

    /// Generate code to increment or decrement the given GC reference's ref
    /// count.
    ///
    /// The new ref count is returned.
    ///
    /// Assumes that the given `gc_ref` is a non-null, non-i31 GC reference.
    fn mutate_ref_count(
        &mut self,
        func_env: &mut FuncEnvironment<'_>,
        builder: &mut FunctionBuilder,
        gc_ref: ir::Value,
        delta: i64,
    ) -> ir::Value {
        debug_assert!(delta == -1 || delta == 1);
        let old_ref_count = self.load_ref_count(func_env, builder, gc_ref);
        let new_ref_count = builder.ins().iadd_imm(old_ref_count, delta);
        self.store_ref_count(func_env, builder, gc_ref, new_ref_count);
        new_ref_count
    }

    /// Load the `*mut VMGcRefActivationsTable` from the vmctx, its `next` bump
    /// finger, and its `end` bump boundary.
    fn load_bump_region(
        &mut self,
        func_env: &mut FuncEnvironment<'_>,
        builder: &mut FunctionBuilder,
    ) -> (ir::Value, ir::Value, ir::Value) {
        let ptr_ty = func_env.pointer_type();
        let vmctx = func_env.vmctx(&mut builder.func);
        let vmctx = builder.ins().global_value(ptr_ty, vmctx);
        let activations_table = builder.ins().load(
            ptr_ty,
            ir::MemFlags::trusted().with_readonly(),
            vmctx,
            i32::from(func_env.offsets.ptr.vmctx_gc_heap_data()),
        );
        let next = builder.ins().load(
            ptr_ty,
            ir::MemFlags::trusted(),
            activations_table,
            i32::try_from(func_env.offsets.vm_gc_ref_activation_table_next()).unwrap(),
        );
        let end = builder.ins().load(
            ptr_ty,
            ir::MemFlags::trusted(),
            activations_table,
            i32::try_from(func_env.offsets.vm_gc_ref_activation_table_end()).unwrap(),
        );
        (activations_table, next, end)
    }

    /// Write to an uninitialized field or element inside a GC object.
    fn init_field(
        &mut self,
        func_env: &mut FuncEnvironment<'_>,
        builder: &mut FunctionBuilder<'_>,
        field_addr: ir::Value,
        ty: WasmStorageType,
        val: ir::Value,
    ) -> WasmResult<()> {
        // Data inside GC objects is always little endian.
        let flags = ir::MemFlags::trusted().with_endianness(ir::Endianness::Little);

        match ty {
            WasmStorageType::Val(WasmValType::Ref(r))
                if r.heap_type.top() == WasmHeapTopType::Func =>
            {
                write_func_ref_at_addr(func_env, builder, r, flags, field_addr, val)?;
            }
            WasmStorageType::Val(WasmValType::Ref(r)) => {
                self.translate_init_gc_reference(func_env, builder, r, field_addr, val, flags)?;
            }
            WasmStorageType::I8 => {
                assert_eq!(builder.func.dfg.value_type(val), ir::types::I32);
                builder.ins().istore8(flags, val, field_addr, 0);
            }
            WasmStorageType::I16 => {
                assert_eq!(builder.func.dfg.value_type(val), ir::types::I32);
                builder.ins().istore16(flags, val, field_addr, 0);
            }
            WasmStorageType::Val(_) => {
                let size_of_access = wasmtime_environ::byte_size_of_wasm_ty_in_gc_heap(&ty);
                assert_eq!(builder.func.dfg.value_type(val).bytes(), size_of_access);
                builder.ins().store(flags, val, field_addr, 0);
            }
        }

        Ok(())
    }

    /// Write to an uninitialized GC reference field, initializing it.
    ///
    /// ```text
    /// *dst = new_val
    /// ```
    ///
    /// Doesn't need to do a full write barrier: we don't have an old reference
    /// that is being overwritten and needs its refcount decremented, just a new
    /// reference whose count should be incremented.
    fn translate_init_gc_reference(
        &mut self,
        func_env: &mut FuncEnvironment<'_>,
        builder: &mut FunctionBuilder,
        ty: WasmRefType,
        dst: ir::Value,
        new_val: ir::Value,
        flags: ir::MemFlags,
    ) -> WasmResult<()> {
        let (ref_ty, needs_stack_map) = func_env.reference_type(ty.heap_type);
        debug_assert!(needs_stack_map);

        // Special case for references to uninhabited bottom types: see
        // `translate_write_gc_reference` for details.
        if let WasmHeapType::None = ty.heap_type {
            if ty.nullable {
                let null = builder.ins().iconst(ref_ty, 0);
                builder.ins().store(flags, null, dst, 0);
            } else {
                let zero = builder.ins().iconst(ir::types::I32, 0);
                builder.ins().trapz(zero, TRAP_INTERNAL_ASSERT);
            }
            return Ok(());
        };

        // Special case for `i31ref`s: no need for any barriers.
        if let WasmHeapType::I31 = ty.heap_type {
            return unbarriered_store_gc_ref(builder, ty.heap_type, dst, new_val, flags);
        }

        // Our initialization barrier for GC references being copied out of the
        // stack and initializing a table/global/struct field/etc... is roughly
        // equivalent to the following pseudo-CLIF:
        //
        // ```
        // current_block:
        //     ...
        //     let new_val_is_null_or_i31 = ...
        //     brif new_val_is_null_or_i31, continue_block, inc_ref_block
        //
        // inc_ref_block:
        //     let ref_count = load new_val.ref_count
        //     let new_ref_count = iadd_imm ref_count, 1
        //     store new_val.ref_count, new_ref_count
        //     jump check_old_val_block
        //
        // continue_block:
        //     store dst, new_val
        //     ...
        // ```
        //
        // This write barrier is responsible for ensuring that the new value's
        // ref count is incremented now that the table/global/struct/etc... is
        // holding onto it.

        let current_block = builder.current_block().unwrap();
        let inc_ref_block = builder.create_block();
        let continue_block = builder.create_block();

        builder.ensure_inserted_block();
        builder.insert_block_after(inc_ref_block, current_block);
        builder.insert_block_after(continue_block, inc_ref_block);

        // Current block: check whether the new value is non-null and
        // non-i31. If so, branch to the `inc_ref_block`.
        log::trace!("DRC initialization barrier: check if the value is null or i31");
        let new_val_is_null_or_i31 = func_env.gc_ref_is_null_or_i31(builder, ty, new_val);
        builder.ins().brif(
            new_val_is_null_or_i31,
            continue_block,
            &[],
            inc_ref_block,
            &[],
        );

        // Block to increment the ref count of the new value when it is non-null
        // and non-i31.
        builder.switch_to_block(inc_ref_block);
        builder.seal_block(inc_ref_block);
        log::trace!("DRC initialization barrier: increment the ref count of the initial value");
        self.mutate_ref_count(func_env, builder, new_val, 1);
        builder.ins().jump(continue_block, &[]);

        // Join point after we're done with the GC barrier: do the actual store
        // to initialize the field.
        builder.switch_to_block(continue_block);
        builder.seal_block(continue_block);
        log::trace!(
            "DRC initialization barrier: finally, store into {dst:?} to initialize the field"
        );
        unbarriered_store_gc_ref(builder, ty.heap_type, dst, new_val, flags)?;

        Ok(())
    }
}

/// Emit CLIF to call the `gc_raw_alloc` libcall.
///
/// It is the caller's responsibility to ensure that `size` fits within the
/// `VMGcKind`'s unused bits.
fn emit_gc_raw_alloc(
    func_env: &mut FuncEnvironment<'_>,
    builder: &mut FunctionBuilder<'_>,
    kind: VMGcKind,
    ty: ModuleInternedTypeIndex,
    size: ir::Value,
    align: u32,
) -> ir::Value {
    let gc_alloc_raw_builtin = func_env.builtin_functions.gc_alloc_raw(builder.func);
    let vmctx = func_env.vmctx_val(&mut builder.cursor());

    let kind = builder
        .ins()
        .iconst(ir::types::I32, i64::from(kind.as_u32()));

    let ty = builder.ins().iconst(ir::types::I32, i64::from(ty.as_u32()));

    assert!(align.is_power_of_two());
    let align = builder.ins().iconst(ir::types::I32, i64::from(align));

    let call_inst = builder
        .ins()
        .call(gc_alloc_raw_builtin, &[vmctx, kind, ty, size, align]);

    let gc_ref = builder.func.dfg.first_result(call_inst);
    let gc_ref = builder.ins().ireduce(ir::types::I32, gc_ref);
    builder.declare_value_needs_stack_map(gc_ref);
    gc_ref
}

impl GcCompiler for DrcCompiler {
    fn layouts(&self) -> &dyn GcTypeLayouts {
        &self.layouts
    }

    fn alloc_array(
        &mut self,
        func_env: &mut FuncEnvironment<'_>,
        builder: &mut FunctionBuilder<'_>,
        array_type_index: TypeIndex,
        init: super::ArrayInit<'_>,
    ) -> WasmResult<ir::Value> {
        let interned_type_index =
            func_env.module.types[array_type_index].unwrap_module_type_index();
        let ptr_ty = func_env.pointer_type();

        let len_offset = gc_compiler(func_env)?.layouts().array_length_field_offset();
        let array_layout = func_env.array_layout(interned_type_index).clone();
        let base_size = array_layout.base_size;
        let align = array_layout.align;
        let len_to_elems_delta = base_size.checked_sub(len_offset).unwrap();

        // First, compute the array's total size from its base size, element
        // size, and length.
        let size = emit_array_size(func_env, builder, &array_layout, init);

        // Second, now that we have the array object's total size, call the
        // `gc_alloc_raw` builtin libcall to allocate the array.
        let array_ref = emit_gc_raw_alloc(
            func_env,
            builder,
            VMGcKind::ArrayRef,
            interned_type_index,
            size,
            align,
        );

        // Write the array's length into the appropriate slot.
        //
        // Note: we don't need to bounds-check the GC ref access here, since we
        // trust the results of the allocation libcall.
        let base = func_env.get_gc_heap_base(builder);
        let extended_array_ref =
            uextend_i32_to_pointer_type(builder, func_env.pointer_type(), array_ref);
        let object_addr = builder.ins().iadd(base, extended_array_ref);
        let len_addr = builder.ins().iadd_imm(object_addr, i64::from(len_offset));
        let len = init.len(&mut builder.cursor());
        builder
            .ins()
            .store(ir::MemFlags::trusted(), len, len_addr, 0);

        // Finally, initialize the elements.
        let len_to_elems_delta = builder.ins().iconst(ptr_ty, i64::from(len_to_elems_delta));
        let elems_addr = builder.ins().iadd(len_addr, len_to_elems_delta);
        init.initialize(
            func_env,
            builder,
            interned_type_index,
            base_size,
            size,
            elems_addr,
            |func_env, builder, elem_ty, elem_addr, val| {
                self.init_field(func_env, builder, elem_addr, elem_ty, val)
            },
        )?;
        Ok(array_ref)
    }

    fn alloc_struct(
        &mut self,
        func_env: &mut FuncEnvironment<'_>,
        builder: &mut FunctionBuilder<'_>,
        struct_type_index: TypeIndex,
        field_vals: &[ir::Value],
    ) -> WasmResult<ir::Value> {
        // First, call the `gc_alloc_raw` builtin libcall to allocate the
        // struct.
        let interned_type_index =
            func_env.module.types[struct_type_index].unwrap_module_type_index();

        let struct_layout = func_env.struct_layout(interned_type_index);

        // Copy some stuff out of the struct layout to avoid borrowing issues.
        let struct_size = struct_layout.size;
        let struct_align = struct_layout.align;
        let field_offsets: SmallVec<[_; 8]> = struct_layout.fields.iter().copied().collect();
        assert_eq!(field_vals.len(), field_offsets.len());

        assert_eq!(VMGcKind::MASK & struct_size, 0);
        assert_eq!(VMGcKind::UNUSED_MASK & struct_size, struct_size);
        let struct_size_val = builder.ins().iconst(ir::types::I32, i64::from(struct_size));

        let struct_ref = emit_gc_raw_alloc(
            func_env,
            builder,
            VMGcKind::StructRef,
            interned_type_index,
            struct_size_val,
            struct_align,
        );

        // Second, initialize each of the newly-allocated struct's fields.
        //
        // Note: we don't need to bounds-check the GC ref access here, since we
        // trust the results of the allocation libcall.
        let base = func_env.get_gc_heap_base(builder);
        let extended_struct_ref =
            uextend_i32_to_pointer_type(builder, func_env.pointer_type(), struct_ref);
        let raw_ptr_to_struct = builder.ins().iadd(base, extended_struct_ref);
        initialize_struct_fields(
            func_env,
            builder,
            interned_type_index,
            raw_ptr_to_struct,
            field_vals,
            |func_env, builder, ty, field_addr, val| {
                self.init_field(func_env, builder, field_addr, ty, val)
            },
        )?;

        Ok(struct_ref)
    }

    fn translate_read_gc_reference(
        &mut self,
        func_env: &mut FuncEnvironment<'_>,
        builder: &mut FunctionBuilder,
        ty: WasmRefType,
        src: ir::Value,
        flags: ir::MemFlags,
    ) -> WasmResult<ir::Value> {
        log::trace!("translate_read_gc_reference({ty:?}, {src:?}, {flags:?})");

        assert!(ty.is_vmgcref_type());

        let (reference_type, needs_stack_map) = func_env.reference_type(ty.heap_type);
        debug_assert!(needs_stack_map);

        // Special case for references to uninhabited bottom types: the
        // reference must either be nullable and we can just eagerly return
        // null, or we are in dynamically unreachable code and should just trap.
        if let WasmHeapType::None = ty.heap_type {
            let null = builder.ins().iconst(reference_type, 0);
            if !ty.nullable {
                // NB: Don't use an unconditional trap instruction, since that
                // is a block terminator, and we still need to integrate with
                // the rest of the surrounding code.
                let zero = builder.ins().iconst(ir::types::I32, 0);
                builder.ins().trapz(zero, TRAP_INTERNAL_ASSERT);
            }
            return Ok(null);
        };

        // Special case for `i31` references: they don't need barriers.
        if let WasmHeapType::I31 = ty.heap_type {
            return unbarriered_load_gc_ref(builder, ty.heap_type, src, flags);
        }

        // Our read barrier for GC references is roughly equivalent to the
        // following pseudo-CLIF:
        //
        // ```
        // current_block:
        //     ...
        //     let gc_ref = load src
        //     let gc_ref_is_null = is_null gc_ref
        //     let gc_ref_is_i31 = ...
        //     let gc_ref_is_null_or_i31 = bor gc_ref_is_null, gc_ref_is_i31
        //     brif gc_ref_is_null_or_i31, continue_block, non_null_gc_ref_block
        //
        // non_null_gc_ref_block:
        //     let (next, end) = load VMGcRefActivationsTable bump region
        //     let bump_region_is_full = icmp eq next, end
        //     brif bump_region_is_full, gc_block, no_gc_block
        //
        // no_gc_block:
        //     let ref_count = load gc_ref.ref_count
        //     let new_ref_count = iadd_imm ref_count, 1
        //     store new_ref_count, gc_ref.ref_count
        //     let new_next = iadd_imm next, size_of(reference_type)
        //     store new_next, activations_table.next
        //     jump continue_block
        //
        // cold gc_block:
        //     ;; NB: The DRC collector is not a moving GC, so we can reuse
        //     ;; `gc_ref`. This lets us avoid a block parameter for the
        //     ;; `continue_block`.
        //     let _moved_gc_ref = call gc(gc_ref)
        //     jump continue_block
        //
        // continue_block:
        //     ...
        // ```
        //
        // This ensures that all GC references entering the Wasm stack are held
        // alive by the `VMGcRefActivationsTable`.

        let current_block = builder.current_block().unwrap();
        let non_null_gc_ref_block = builder.create_block();
        let gc_block = builder.create_block();
        let no_gc_block = builder.create_block();
        let continue_block = builder.create_block();

        builder.set_cold_block(gc_block);
        builder.ensure_inserted_block();
        builder.insert_block_after(non_null_gc_ref_block, current_block);
        builder.insert_block_after(no_gc_block, non_null_gc_ref_block);
        builder.insert_block_after(gc_block, no_gc_block);
        builder.insert_block_after(continue_block, gc_block);

        log::trace!("DRC read barrier: load the gc reference and check for null or i31");
        let gc_ref = unbarriered_load_gc_ref(builder, ty.heap_type, src, flags)?;
        let gc_ref_is_null_or_i31 = func_env.gc_ref_is_null_or_i31(builder, ty, gc_ref);
        builder.ins().brif(
            gc_ref_is_null_or_i31,
            continue_block,
            &[],
            non_null_gc_ref_block,
            &[],
        );

        // Block for when the GC reference is not null and is not an `i31ref`.
        //
        // Load the `VMGcRefActivationsTable::next` bump finger and the
        // `VMGcRefActivationsTable::end` bump boundary and check whether the
        // bump region is full or not.
        builder.switch_to_block(non_null_gc_ref_block);
        builder.seal_block(non_null_gc_ref_block);
        log::trace!("DRC read barrier: load bump region and check capacity");
        let (activations_table, next, end) = self.load_bump_region(func_env, builder);
        let bump_region_is_full = builder.ins().icmp(IntCC::Equal, next, end);
        builder
            .ins()
            .brif(bump_region_is_full, gc_block, &[], no_gc_block, &[]);

        // Block for when the bump region is not full. We should:
        //
        // * increment this reference's ref count,
        // * store the reference into the bump table at `*next`,
        // * and finally increment the `next` bump finger.
        builder.switch_to_block(no_gc_block);
        builder.seal_block(no_gc_block);
        log::trace!("DRC read barrier: increment ref count and inline insert into bump region");
        self.mutate_ref_count(func_env, builder, gc_ref, 1);
        builder
            .ins()
            .store(ir::MemFlags::trusted(), gc_ref, next, 0);
        let new_next = builder
            .ins()
            .iadd_imm(next, i64::from(reference_type.bytes()));
        builder.ins().store(
            ir::MemFlags::trusted(),
            new_next,
            activations_table,
            i32::try_from(func_env.offsets.vm_gc_ref_activation_table_next()).unwrap(),
        );
        builder.ins().jump(continue_block, &[]);

        // Block for when the bump region is full and we need to do a GC.
        builder.switch_to_block(gc_block);
        builder.seal_block(gc_block);
        log::trace!("DRC read barrier: slow path for when the bump region is full; do a gc");
        let gc_libcall = func_env.builtin_functions.gc(builder.func);
        let vmctx = func_env.vmctx_val(&mut builder.cursor());
        builder.ins().call(gc_libcall, &[vmctx, gc_ref]);
        builder.ins().jump(continue_block, &[]);

        // Join point after we're done with the GC barrier.
        builder.switch_to_block(continue_block);
        builder.seal_block(continue_block);
        log::trace!("translate_read_gc_reference(..) -> {gc_ref:?}");
        Ok(gc_ref)
    }

    fn translate_write_gc_reference(
        &mut self,
        func_env: &mut FuncEnvironment<'_>,
        builder: &mut FunctionBuilder,
        ty: WasmRefType,
        dst: ir::Value,
        new_val: ir::Value,
        flags: ir::MemFlags,
    ) -> WasmResult<()> {
        assert!(ty.is_vmgcref_type());

        let (ref_ty, needs_stack_map) = func_env.reference_type(ty.heap_type);
        debug_assert!(needs_stack_map);

        // Special case for references to uninhabited bottom types: either the
        // reference must either be nullable and we can just eagerly store null
        // into `dst`, or we are in unreachable code and should just trap.
        if let WasmHeapType::None = ty.heap_type {
            if ty.nullable {
                let null = builder.ins().iconst(ref_ty, 0);
                builder.ins().store(flags, null, dst, 0);
            } else {
                // NB: Don't use an unconditional trap instruction, since that
                // is a block terminator, and we still need to integrate with
                // the rest of the surrounding code.
                let zero = builder.ins().iconst(ir::types::I32, 0);
                builder.ins().trapz(zero, TRAP_INTERNAL_ASSERT);
            }
            return Ok(());
        };

        // Special case for `i31` references: they don't need barriers.
        if let WasmHeapType::I31 = ty.heap_type {
            return unbarriered_store_gc_ref(builder, ty.heap_type, dst, new_val, flags);
        }

        // Our write barrier for GC references being copied out of the stack and
        // written into a table/global/etc... is roughly equivalent to the
        // following pseudo-CLIF:
        //
        // ```
        // current_block:
        //     ...
        //     let old_val = *dst
        //     let new_val_is_null = ref.null new_val
        //     let new_val_is_i31 = ...
        //     let new_val_is_null_or_i31 = bor new_val_is_null, new_val_is_i31
        //     brif new_val_is_null_or_i31, check_old_val_block, inc_ref_block
        //
        // inc_ref_block:
        //     let ref_count = load new_val.ref_count
        //     let new_ref_count = iadd_imm ref_count, 1
        //     store new_val.ref_count, new_ref_count
        //     jump check_old_val_block
        //
        // check_old_val_block:
        //     store dst, new_val
        //     let old_val_is_null = ref.null old_val
        //     let old_val_is_i31 = ...
        //     let old_val_is_null_or_i31 = bor old_val_is_null, old_val_is_i31
        //     brif old_val_is_null_or_i31, continue_block, dec_ref_block
        //
        // dec_ref_block:
        //     let ref_count = load old_val.ref_count
        //     let new_ref_count = isub_imm ref_count, 1
        //     let old_val_needs_drop = icmp_imm eq new_ref_count, 0
        //     brif old_val_needs_drop, drop_old_val_block, store_dec_ref_block
        //
        // cold drop_old_val_block:
        //     call drop_gc_ref(old_val)
        //     jump continue_block
        //
        // store_dec_ref_block:
        //     store old_val.ref_count, new_ref_count
        //     jump continue_block
        //
        // continue_block:
        //     ...
        // ```
        //
        // This write barrier is responsible for ensuring that:
        //
        // 1. The new value's ref count is incremented now that the table is
        //    holding onto it.
        //
        // 2. The old value's ref count is decremented, and that it is dropped
        //    if the ref count reaches zero.
        //
        // We must do the increment before the decrement. If we did it in the
        // other order, then when `*dst == new_val`, we could confuse ourselves
        // by observing a zero ref count after the decrement but before it would
        // become non-zero again with the subsequent increment.
        //
        // Additionally, we take care that we don't ever call out-out-of-line to
        // drop the old value until all the new value has been written into
        // `dst` and its reference count has been updated. This makes sure that
        // host code has a consistent view of the world.

        let current_block = builder.current_block().unwrap();
        let inc_ref_block = builder.create_block();
        let check_old_val_block = builder.create_block();
        let dec_ref_block = builder.create_block();
        let drop_old_val_block = builder.create_block();
        let store_dec_ref_block = builder.create_block();
        let continue_block = builder.create_block();

        builder.ensure_inserted_block();
        builder.set_cold_block(drop_old_val_block);

        builder.insert_block_after(inc_ref_block, current_block);
        builder.insert_block_after(check_old_val_block, inc_ref_block);
        builder.insert_block_after(dec_ref_block, check_old_val_block);
        builder.insert_block_after(drop_old_val_block, dec_ref_block);
        builder.insert_block_after(store_dec_ref_block, drop_old_val_block);
        builder.insert_block_after(continue_block, store_dec_ref_block);

        // Load the old value and then check whether the new value is non-null
        // and non-i31.
        log::trace!("DRC write barrier: load old ref; check if new ref is null or i31");
        let old_val = unbarriered_load_gc_ref(builder, ty.heap_type, dst, flags)?;
        let new_val_is_null_or_i31 = func_env.gc_ref_is_null_or_i31(builder, ty, new_val);
        builder.ins().brif(
            new_val_is_null_or_i31,
            check_old_val_block,
            &[],
            inc_ref_block,
            &[],
        );

        // Block to increment the ref count of the new value when it is non-null
        // and non-i31.
        builder.switch_to_block(inc_ref_block);
        log::trace!("DRC write barrier: increment new ref's ref count");
        builder.seal_block(inc_ref_block);
        self.mutate_ref_count(func_env, builder, new_val, 1);
        builder.ins().jump(check_old_val_block, &[]);

        // Block to store the new value into `dst` and then check whether the
        // old value is non-null and non-i31 and therefore needs its ref count
        // decremented.
        builder.switch_to_block(check_old_val_block);
        builder.seal_block(check_old_val_block);
        log::trace!("DRC write barrier: store new ref into field; check if old ref is null or i31");
        unbarriered_store_gc_ref(builder, ty.heap_type, dst, new_val, flags)?;
        let old_val_is_null_or_i31 = func_env.gc_ref_is_null_or_i31(builder, ty, old_val);
        builder.ins().brif(
            old_val_is_null_or_i31,
            continue_block,
            &[],
            dec_ref_block,
            &[],
        );

        // Block to decrement the ref count of the old value when it is non-null
        // and non-i31.
        builder.switch_to_block(dec_ref_block);
        builder.seal_block(dec_ref_block);
        log::trace!(
            "DRC write barrier: decrement old ref's ref count and check for zero ref count"
        );
        let ref_count = self.load_ref_count(func_env, builder, old_val);
        let new_ref_count = builder.ins().iadd_imm(ref_count, -1);
        let old_val_needs_drop = builder.ins().icmp_imm(IntCC::Equal, new_ref_count, 0);
        builder.ins().brif(
            old_val_needs_drop,
            drop_old_val_block,
            &[],
            store_dec_ref_block,
            &[],
        );

        // Block to call out-of-line to drop a GC reference when its ref count
        // reaches zero.
        //
        // Note that this libcall does its own dec-ref operation, so we only
        // actually store `new_ref_count` back to the `old_val` object when
        // `new_ref_count != 0`.
        builder.switch_to_block(drop_old_val_block);
        builder.seal_block(drop_old_val_block);
        log::trace!("DRC write barrier: drop old ref with a ref count of zero");
        let drop_gc_ref_libcall = func_env.builtin_functions.drop_gc_ref(builder.func);
        let vmctx = func_env.vmctx_val(&mut builder.cursor());
        builder.ins().call(drop_gc_ref_libcall, &[vmctx, old_val]);
        builder.ins().jump(continue_block, &[]);

        // Block to store the new ref count back to `old_val` for when
        // `new_ref_count != 0`, as explained above.
        builder.switch_to_block(store_dec_ref_block);
        builder.seal_block(store_dec_ref_block);
        log::trace!("DRC write barrier: store decremented ref count into old ref");
        self.store_ref_count(func_env, builder, old_val, new_ref_count);
        builder.ins().jump(continue_block, &[]);

        // Join point after we're done with the GC barrier.
        builder.switch_to_block(continue_block);
        builder.seal_block(continue_block);
        log::trace!("DRC write barrier: finished");
        Ok(())
    }
}