geo_types/geometry/line_string.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
#[cfg(any(feature = "approx", test))]
use approx::{AbsDiffEq, RelativeEq};
use crate::{Coord, CoordNum, Line, Point, Triangle};
use alloc::vec;
use alloc::vec::Vec;
use core::iter::FromIterator;
use core::ops::{Index, IndexMut};
/// An ordered collection of [`Coord`]s, representing a path between locations.
/// To be valid, a `LineString` must be empty, or have two or more coords.
///
/// # Semantics
///
/// 1. A [`LineString`] is _closed_ if it is empty, **or** if the first and last coordinates are the same.
/// 2. The _boundary_ of a [`LineString`] is either:
/// - **empty** if it is _closed_ (see **1**) **or**
/// - contains the **start** and **end** coordinates.
/// 3. The _interior_ is the (infinite) set of all coordinates along the [`LineString`], _not including_ the boundary.
/// 4. A [`LineString`] is _simple_ if it does not intersect except **optionally** at the first and last coordinates (in which case it is also _closed_, see **1**).
/// 5. A _simple_ **and** _closed_ [`LineString`] is a `LinearRing` as defined in the OGC-SFA (but is not defined as a separate type in this crate).
///
/// # Validity
///
/// A [`LineString`] is valid if it is either empty or
/// contains 2 or more coordinates.
///
/// Further, a closed [`LineString`] **must not** self-intersect. Note that its
/// validity is **not** enforced, and operations and
/// predicates are **undefined** on invalid `LineString`s.
///
/// # Examples
/// ## Creation
///
/// Create a [`LineString`] by calling it directly:
///
/// ```
/// use geo_types::{coord, LineString};
///
/// let line_string = LineString::new(vec![
/// coord! { x: 0., y: 0. },
/// coord! { x: 10., y: 0. },
/// ]);
/// ```
///
/// Create a [`LineString`] with the [`line_string!`][`crate::line_string!`] macro:
///
/// ```
/// use geo_types::line_string;
///
/// let line_string = line_string![
/// (x: 0., y: 0.),
/// (x: 10., y: 0.),
/// ];
/// ```
///
/// By converting from a [`Vec`] of coordinate-like things:
///
/// ```
/// use geo_types::LineString;
///
/// let line_string: LineString<f32> = vec![(0., 0.), (10., 0.)].into();
/// ```
///
/// ```
/// use geo_types::LineString;
///
/// let line_string: LineString = vec![[0., 0.], [10., 0.]].into();
/// ```
//
/// Or by `collect`ing from a [`Coord`] iterator
///
/// ```
/// use geo_types::{coord, LineString};
///
/// let mut coords_iter =
/// vec![coord! { x: 0., y: 0. }, coord! { x: 10., y: 0. }].into_iter();
///
/// let line_string: LineString<f32> = coords_iter.collect();
/// ```
///
/// ## Iteration
/// [`LineString`] provides five iterators: [`coords`](LineString::coords), [`coords_mut`](LineString::coords_mut), [`points`](LineString::points), [`lines`](LineString::lines), and [`triangles`](LineString::triangles):
///
/// ```
/// use geo_types::{coord, LineString};
///
/// let line_string = LineString::new(vec![
/// coord! { x: 0., y: 0. },
/// coord! { x: 10., y: 0. },
/// ]);
///
/// line_string.coords().for_each(|coord| println!("{:?}", coord));
///
/// for point in line_string.points() {
/// println!("Point x = {}, y = {}", point.x(), point.y());
/// }
/// ```
///
/// Note that its [`IntoIterator`] impl yields [`Coord`]s when looping:
///
/// ```
/// use geo_types::{coord, LineString};
///
/// let line_string = LineString::new(vec![
/// coord! { x: 0., y: 0. },
/// coord! { x: 10., y: 0. },
/// ]);
///
/// for coord in &line_string {
/// println!("Coordinate x = {}, y = {}", coord.x, coord.y);
/// }
///
/// for coord in line_string {
/// println!("Coordinate x = {}, y = {}", coord.x, coord.y);
/// }
///
/// ```
/// ## Decomposition
///
/// You can decompose a [`LineString`] into a [`Vec`] of [`Coord`]s or [`Point`]s:
/// ```
/// use geo_types::{coord, LineString, Point};
///
/// let line_string = LineString::new(vec![
/// coord! { x: 0., y: 0. },
/// coord! { x: 10., y: 0. },
/// ]);
///
/// let coordinate_vec = line_string.clone().into_inner();
/// let point_vec = line_string.clone().into_points();
///
/// ```
#[derive(Eq, PartialEq, Clone, Debug, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct LineString<T: CoordNum = f64>(pub Vec<Coord<T>>);
/// A [`Point`] iterator returned by the `points` method
#[derive(Debug)]
pub struct PointsIter<'a, T: CoordNum + 'a>(::core::slice::Iter<'a, Coord<T>>);
impl<'a, T: CoordNum> Iterator for PointsIter<'a, T> {
type Item = Point<T>;
fn next(&mut self) -> Option<Self::Item> {
self.0.next().map(|c| Point::from(*c))
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.0.size_hint()
}
}
impl<'a, T: CoordNum> ExactSizeIterator for PointsIter<'a, T> {
fn len(&self) -> usize {
self.0.len()
}
}
impl<'a, T: CoordNum> DoubleEndedIterator for PointsIter<'a, T> {
fn next_back(&mut self) -> Option<Self::Item> {
self.0.next_back().map(|c| Point::from(*c))
}
}
/// A [`Coord`] iterator used by the `into_iter` method on a [`LineString`]
#[derive(Debug)]
pub struct CoordinatesIter<'a, T: CoordNum + 'a>(::core::slice::Iter<'a, Coord<T>>);
impl<'a, T: CoordNum> Iterator for CoordinatesIter<'a, T> {
type Item = &'a Coord<T>;
fn next(&mut self) -> Option<Self::Item> {
self.0.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.0.size_hint()
}
}
impl<'a, T: CoordNum> ExactSizeIterator for CoordinatesIter<'a, T> {
fn len(&self) -> usize {
self.0.len()
}
}
impl<'a, T: CoordNum> DoubleEndedIterator for CoordinatesIter<'a, T> {
fn next_back(&mut self) -> Option<Self::Item> {
self.0.next_back()
}
}
impl<T: CoordNum> LineString<T> {
/// Instantiate Self from the raw content value
pub fn new(value: Vec<Coord<T>>) -> Self {
Self(value)
}
/// Return an iterator yielding the coordinates of a [`LineString`] as [`Point`]s
#[deprecated(note = "Use points() instead")]
pub fn points_iter(&self) -> PointsIter<T> {
PointsIter(self.0.iter())
}
/// Return an iterator yielding the coordinates of a [`LineString`] as [`Point`]s
pub fn points(&self) -> PointsIter<T> {
PointsIter(self.0.iter())
}
/// Return an iterator yielding the members of a [`LineString`] as [`Coord`]s
pub fn coords(&self) -> impl DoubleEndedIterator<Item = &Coord<T>> {
self.0.iter()
}
/// Return an iterator yielding the coordinates of a [`LineString`] as mutable [`Coord`]s
pub fn coords_mut(&mut self) -> impl DoubleEndedIterator<Item = &mut Coord<T>> {
self.0.iter_mut()
}
/// Return the coordinates of a [`LineString`] as a [`Vec`] of [`Point`]s
pub fn into_points(self) -> Vec<Point<T>> {
self.0.into_iter().map(Point::from).collect()
}
/// Return the coordinates of a [`LineString`] as a [`Vec`] of [`Coord`]s
pub fn into_inner(self) -> Vec<Coord<T>> {
self.0
}
/// Return an iterator yielding one [Line] for each line segment
/// in the [`LineString`].
///
/// # Examples
///
/// ```
/// use geo_types::{coord, Line, LineString};
///
/// let mut coords = vec![(0., 0.), (5., 0.), (7., 9.)];
/// let line_string: LineString<f32> = coords.into_iter().collect();
///
/// let mut lines = line_string.lines();
/// assert_eq!(
/// Some(Line::new(
/// coord! { x: 0., y: 0. },
/// coord! { x: 5., y: 0. }
/// )),
/// lines.next()
/// );
/// assert_eq!(
/// Some(Line::new(
/// coord! { x: 5., y: 0. },
/// coord! { x: 7., y: 9. }
/// )),
/// lines.next()
/// );
/// assert!(lines.next().is_none());
/// ```
pub fn lines(&'_ self) -> impl ExactSizeIterator<Item = Line<T>> + '_ {
self.0.windows(2).map(|w| {
// slice::windows(N) is guaranteed to yield a slice with exactly N elements
unsafe { Line::new(*w.get_unchecked(0), *w.get_unchecked(1)) }
})
}
/// An iterator which yields the coordinates of a [`LineString`] as [Triangle]s
pub fn triangles(&'_ self) -> impl ExactSizeIterator<Item = Triangle<T>> + '_ {
self.0.windows(3).map(|w| {
// slice::windows(N) is guaranteed to yield a slice with exactly N elements
unsafe {
Triangle::new(
*w.get_unchecked(0),
*w.get_unchecked(1),
*w.get_unchecked(2),
)
}
})
}
/// Close the [`LineString`]. Specifically, if the [`LineString`] has at least one [`Coord`], and
/// the value of the first [`Coord`] **does not** equal the value of the last [`Coord`], then a
/// new [`Coord`] is added to the end with the value of the first [`Coord`].
pub fn close(&mut self) {
if !self.is_closed() {
// by definition, we treat empty LineString's as closed.
debug_assert!(!self.0.is_empty());
self.0.push(self.0[0]);
}
}
/// Return the number of coordinates in the [`LineString`].
///
/// # Examples
///
/// ```
/// use geo_types::LineString;
///
/// let mut coords = vec![(0., 0.), (5., 0.), (7., 9.)];
/// let line_string: LineString<f32> = coords.into_iter().collect();
///
/// # #[allow(deprecated)]
/// # {
/// assert_eq!(3, line_string.num_coords());
/// # }
/// ```
#[deprecated(note = "Use geo::CoordsIter::coords_count instead")]
pub fn num_coords(&self) -> usize {
self.0.len()
}
/// Checks if the linestring is closed; i.e. it is
/// either empty or, the first and last points are the
/// same.
///
/// # Examples
///
/// ```
/// use geo_types::LineString;
///
/// let mut coords = vec![(0., 0.), (5., 0.), (0., 0.)];
/// let line_string: LineString<f32> = coords.into_iter().collect();
/// assert!(line_string.is_closed());
/// ```
///
/// Note that we diverge from some libraries ([JTS](https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/LinearRing.html) et al), which have a `LinearRing` type,
/// separate from [`LineString`]. Those libraries treat an empty `LinearRing` as **closed** by
/// definition, while treating an empty `LineString` as **open**. Since we don't have a separate
/// `LinearRing` type, and use a [`LineString`] in its place, we adopt the JTS `LinearRing` `is_closed`
/// behavior in all places: that is, **we consider an empty [`LineString`] as closed**.
///
/// This is expected when used in the context of a [`Polygon.exterior`](crate::Polygon::exterior) and elsewhere; And there
/// seems to be no reason to maintain the separate behavior for [`LineString`]s used in
/// non-`LinearRing` contexts.
pub fn is_closed(&self) -> bool {
self.0.first() == self.0.last()
}
}
/// Turn a [`Vec`] of [`Point`]-like objects into a [`LineString`].
impl<T: CoordNum, IC: Into<Coord<T>>> From<Vec<IC>> for LineString<T> {
fn from(v: Vec<IC>) -> Self {
Self(v.into_iter().map(|c| c.into()).collect())
}
}
impl<T: CoordNum> From<Line<T>> for LineString<T> {
fn from(line: Line<T>) -> Self {
LineString::from(&line)
}
}
impl<T: CoordNum> From<&Line<T>> for LineString<T> {
fn from(line: &Line<T>) -> Self {
Self(vec![line.start, line.end])
}
}
/// Turn an iterator of [`Point`]-like objects into a [`LineString`].
impl<T: CoordNum, IC: Into<Coord<T>>> FromIterator<IC> for LineString<T> {
fn from_iter<I: IntoIterator<Item = IC>>(iter: I) -> Self {
Self(iter.into_iter().map(|c| c.into()).collect())
}
}
/// Iterate over all the [`Coord`]s in this [`LineString`].
impl<T: CoordNum> IntoIterator for LineString<T> {
type Item = Coord<T>;
type IntoIter = ::alloc::vec::IntoIter<Coord<T>>;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
impl<'a, T: CoordNum> IntoIterator for &'a LineString<T> {
type Item = &'a Coord<T>;
type IntoIter = CoordinatesIter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
CoordinatesIter(self.0.iter())
}
}
/// Mutably iterate over all the [`Coord`]s in this [`LineString`]
impl<'a, T: CoordNum> IntoIterator for &'a mut LineString<T> {
type Item = &'a mut Coord<T>;
type IntoIter = ::core::slice::IterMut<'a, Coord<T>>;
fn into_iter(self) -> ::core::slice::IterMut<'a, Coord<T>> {
self.0.iter_mut()
}
}
impl<T: CoordNum> Index<usize> for LineString<T> {
type Output = Coord<T>;
fn index(&self, index: usize) -> &Coord<T> {
self.0.index(index)
}
}
impl<T: CoordNum> IndexMut<usize> for LineString<T> {
fn index_mut(&mut self, index: usize) -> &mut Coord<T> {
self.0.index_mut(index)
}
}
#[cfg(any(feature = "approx", test))]
impl<T> RelativeEq for LineString<T>
where
T: AbsDiffEq<Epsilon = T> + CoordNum + RelativeEq,
{
#[inline]
fn default_max_relative() -> Self::Epsilon {
T::default_max_relative()
}
/// Equality assertion within a relative limit.
///
/// # Examples
///
/// ```
/// use geo_types::LineString;
///
/// let mut coords_a = vec![(0., 0.), (5., 0.), (7., 9.)];
/// let a: LineString<f32> = coords_a.into_iter().collect();
///
/// let mut coords_b = vec![(0., 0.), (5., 0.), (7.001, 9.)];
/// let b: LineString<f32> = coords_b.into_iter().collect();
///
/// approx::assert_relative_eq!(a, b, max_relative=0.1)
/// ```
///
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
if self.0.len() != other.0.len() {
return false;
}
let points_zipper = self.points().zip(other.points());
for (lhs, rhs) in points_zipper {
if lhs.relative_ne(&rhs, epsilon, max_relative) {
return false;
}
}
true
}
}
#[cfg(any(feature = "approx", test))]
impl<T: AbsDiffEq<Epsilon = T> + CoordNum> AbsDiffEq for LineString<T> {
type Epsilon = T;
#[inline]
fn default_epsilon() -> Self::Epsilon {
T::default_epsilon()
}
/// Equality assertion with an absolute limit.
///
/// # Examples
///
/// ```
/// use geo_types::LineString;
///
/// let mut coords_a = vec![(0., 0.), (5., 0.), (7., 9.)];
/// let a: LineString<f32> = coords_a.into_iter().collect();
///
/// let mut coords_b = vec![(0., 0.), (5., 0.), (7.001, 9.)];
/// let b: LineString<f32> = coords_b.into_iter().collect();
///
/// approx::assert_relative_eq!(a, b, epsilon=0.1)
/// ```
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
if self.0.len() != other.0.len() {
return false;
}
let mut points_zipper = self.points().zip(other.points());
points_zipper.all(|(lhs, rhs)| lhs.abs_diff_eq(&rhs, epsilon))
}
}
#[cfg(any(
feature = "rstar_0_8",
feature = "rstar_0_9",
feature = "rstar_0_10",
feature = "rstar_0_11",
feature = "rstar_0_12"
))]
macro_rules! impl_rstar_line_string {
($rstar:ident) => {
impl<T> ::$rstar::RTreeObject for LineString<T>
where
T: ::num_traits::Float + ::$rstar::RTreeNum,
{
type Envelope = ::$rstar::AABB<Point<T>>;
fn envelope(&self) -> Self::Envelope {
use num_traits::Bounded;
let bounding_rect = crate::private_utils::line_string_bounding_rect(self);
match bounding_rect {
None => ::$rstar::AABB::from_corners(
Point::new(Bounded::min_value(), Bounded::min_value()),
Point::new(Bounded::max_value(), Bounded::max_value()),
),
Some(b) => ::$rstar::AABB::from_corners(
Point::new(b.min().x, b.min().y),
Point::new(b.max().x, b.max().y),
),
}
}
}
impl<T> ::$rstar::PointDistance for LineString<T>
where
T: ::num_traits::Float + ::$rstar::RTreeNum,
{
fn distance_2(&self, point: &Point<T>) -> T {
let d = crate::private_utils::point_line_string_euclidean_distance(*point, self);
if d == T::zero() {
d
} else {
d.powi(2)
}
}
}
};
}
#[cfg(feature = "rstar_0_8")]
impl_rstar_line_string!(rstar_0_8);
#[cfg(feature = "rstar_0_9")]
impl_rstar_line_string!(rstar_0_9);
#[cfg(feature = "rstar_0_10")]
impl_rstar_line_string!(rstar_0_10);
#[cfg(feature = "rstar_0_11")]
impl_rstar_line_string!(rstar_0_11);
#[cfg(feature = "rstar_0_12")]
impl_rstar_line_string!(rstar_0_12);
#[cfg(test)]
mod test {
use super::*;
use crate::coord;
use approx::AbsDiffEq;
#[test]
fn test_exact_size() {
// see https://github.com/georust/geo/issues/762
let first = coord! { x: 0., y: 0. };
let ls = LineString::new(vec![first, coord! { x: 10., y: 0. }]);
// reference to force the `impl IntoIterator for &LineString` impl, giving a `CoordinatesIter`
for c in (&ls).into_iter().rev().skip(1).rev() {
assert_eq!(&first, c);
}
for p in ls.points().rev().skip(1).rev() {
assert_eq!(Point::from(first), p);
}
}
#[test]
fn test_abs_diff_eq() {
let delta = 1e-6;
let coords = vec![(0., 0.), (5., 0.), (10., 10.)];
let ls: LineString<f32> = coords.into_iter().collect();
let coords_x = vec![(0., 0.), (5. + delta, 0.), (10., 10.)];
let ls_x: LineString<f32> = coords_x.into_iter().collect();
assert!(ls.abs_diff_eq(&ls_x, 1e-2));
assert!(ls.abs_diff_ne(&ls_x, 1e-12));
let coords_y = vec![(0., 0.), (5., 0. + delta), (10., 10.)];
let ls_y: LineString<f32> = coords_y.into_iter().collect();
assert!(ls.abs_diff_eq(&ls_y, 1e-2));
assert!(ls.abs_diff_ne(&ls_y, 1e-12));
// Undersized, but otherwise equal.
let coords_x = vec![(0., 0.), (5., 0.)];
let ls_under: LineString<f32> = coords_x.into_iter().collect();
assert!(ls.abs_diff_ne(&ls_under, 1.));
// Oversized, but otherwise equal.
let coords_x = vec![(0., 0.), (5., 0.), (10., 10.), (10., 100.)];
let ls_oversized: LineString<f32> = coords_x.into_iter().collect();
assert!(ls.abs_diff_ne(&ls_oversized, 1.));
}
#[test]
fn test_relative_eq() {
let delta = 1e-6;
let coords = vec![(0., 0.), (5., 0.), (10., 10.)];
let ls: LineString<f32> = coords.into_iter().collect();
let coords_x = vec![(0., 0.), (5. + delta, 0.), (10., 10.)];
let ls_x: LineString<f32> = coords_x.into_iter().collect();
assert!(ls.relative_eq(&ls_x, 1e-2, 1e-2));
assert!(ls.relative_ne(&ls_x, 1e-12, 1e-12));
let coords_y = vec![(0., 0.), (5., 0. + delta), (10., 10.)];
let ls_y: LineString<f32> = coords_y.into_iter().collect();
assert!(ls.relative_eq(&ls_y, 1e-2, 1e-2));
assert!(ls.relative_ne(&ls_y, 1e-12, 1e-12));
// Undersized, but otherwise equal.
let coords_x = vec![(0., 0.), (5., 0.)];
let ls_under: LineString<f32> = coords_x.into_iter().collect();
assert!(ls.relative_ne(&ls_under, 1., 1.));
// Oversized, but otherwise equal.
let coords_x = vec![(0., 0.), (5., 0.), (10., 10.), (10., 100.)];
let ls_oversized: LineString<f32> = coords_x.into_iter().collect();
assert!(ls.relative_ne(&ls_oversized, 1., 1.));
}
#[test]
fn should_be_built_from_line() {
let start = coord! { x: 0, y: 0 };
let end = coord! { x: 10, y: 10 };
let line = Line::new(start, end);
let expected = LineString::new(vec![start, end]);
assert_eq!(expected, LineString::from(line));
let start = coord! { x: 10., y: 0.5 };
let end = coord! { x: 10000., y: 10.4 };
let line = Line::new(start, end);
let expected = LineString::new(vec![start, end]);
assert_eq!(expected, LineString::from(line));
}
}