geo_types/geometry/
line_string.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
#[cfg(any(feature = "approx", test))]
use approx::{AbsDiffEq, RelativeEq};

use crate::{Coord, CoordNum, Line, Point, Triangle};
use alloc::vec;
use alloc::vec::Vec;
use core::iter::FromIterator;
use core::ops::{Index, IndexMut};

/// An ordered collection of [`Coord`]s, representing a path between locations.
/// To be valid, a `LineString` must be empty, or have two or more coords.
///
/// # Semantics
///
/// 1. A [`LineString`] is _closed_ if it is empty, **or** if the first and last coordinates are the same.
/// 2. The _boundary_ of a [`LineString`] is either:
///     - **empty** if it is _closed_ (see **1**) **or**
///     - contains the **start** and **end** coordinates.
/// 3. The _interior_ is the (infinite) set of all coordinates along the [`LineString`], _not including_ the boundary.
/// 4. A [`LineString`] is _simple_ if it does not intersect except **optionally** at the first and last coordinates (in which case it is also _closed_, see **1**).
/// 5. A _simple_ **and** _closed_ [`LineString`] is a `LinearRing` as defined in the OGC-SFA (but is not defined as a separate type in this crate).
///
/// # Validity
///
/// A [`LineString`] is valid if it is either empty or
/// contains 2 or more coordinates.
///
/// Further, a closed [`LineString`] **must not** self-intersect. Note that its
/// validity is **not** enforced, and operations and
/// predicates are **undefined** on invalid `LineString`s.
///
/// # Examples
/// ## Creation
///
/// Create a [`LineString`] by calling it directly:
///
/// ```
/// use geo_types::{coord, LineString};
///
/// let line_string = LineString::new(vec![
///     coord! { x: 0., y: 0. },
///     coord! { x: 10., y: 0. },
/// ]);
/// ```
///
/// Create a [`LineString`] with the [`line_string!`][`crate::line_string!`] macro:
///
/// ```
/// use geo_types::line_string;
///
/// let line_string = line_string![
///     (x: 0., y: 0.),
///     (x: 10., y: 0.),
/// ];
/// ```
///
/// By converting from a [`Vec`] of coordinate-like things:
///
/// ```
/// use geo_types::LineString;
///
/// let line_string: LineString<f32> = vec![(0., 0.), (10., 0.)].into();
/// ```
///
/// ```
/// use geo_types::LineString;
///
/// let line_string: LineString = vec![[0., 0.], [10., 0.]].into();
/// ```
//
/// Or by `collect`ing from a [`Coord`] iterator
///
/// ```
/// use geo_types::{coord, LineString};
///
/// let mut coords_iter =
///     vec![coord! { x: 0., y: 0. }, coord! { x: 10., y: 0. }].into_iter();
///
/// let line_string: LineString<f32> = coords_iter.collect();
/// ```
///
/// ## Iteration
/// [`LineString`] provides five iterators: [`coords`](LineString::coords), [`coords_mut`](LineString::coords_mut), [`points`](LineString::points), [`lines`](LineString::lines), and [`triangles`](LineString::triangles):
///
/// ```
/// use geo_types::{coord, LineString};
///
/// let line_string = LineString::new(vec![
///     coord! { x: 0., y: 0. },
///     coord! { x: 10., y: 0. },
/// ]);
///
/// line_string.coords().for_each(|coord| println!("{:?}", coord));
///
/// for point in line_string.points() {
///     println!("Point x = {}, y = {}", point.x(), point.y());
/// }
/// ```
///
/// Note that its [`IntoIterator`] impl yields [`Coord`]s when looping:
///
/// ```
/// use geo_types::{coord, LineString};
///
/// let line_string = LineString::new(vec![
///     coord! { x: 0., y: 0. },
///     coord! { x: 10., y: 0. },
/// ]);
///
/// for coord in &line_string {
///     println!("Coordinate x = {}, y = {}", coord.x, coord.y);
/// }
///
/// for coord in line_string {
///     println!("Coordinate x = {}, y = {}", coord.x, coord.y);
/// }
///
/// ```
/// ## Decomposition
///
/// You can decompose a [`LineString`] into a [`Vec`] of [`Coord`]s or [`Point`]s:
/// ```
/// use geo_types::{coord, LineString, Point};
///
/// let line_string = LineString::new(vec![
///     coord! { x: 0., y: 0. },
///     coord! { x: 10., y: 0. },
/// ]);
///
/// let coordinate_vec = line_string.clone().into_inner();
/// let point_vec = line_string.clone().into_points();
///
/// ```

#[derive(Eq, PartialEq, Clone, Debug, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct LineString<T: CoordNum = f64>(pub Vec<Coord<T>>);

/// A [`Point`] iterator returned by the `points` method
#[derive(Debug)]
pub struct PointsIter<'a, T: CoordNum + 'a>(::core::slice::Iter<'a, Coord<T>>);

impl<'a, T: CoordNum> Iterator for PointsIter<'a, T> {
    type Item = Point<T>;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|c| Point::from(*c))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
}

impl<'a, T: CoordNum> ExactSizeIterator for PointsIter<'a, T> {
    fn len(&self) -> usize {
        self.0.len()
    }
}

impl<'a, T: CoordNum> DoubleEndedIterator for PointsIter<'a, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.0.next_back().map(|c| Point::from(*c))
    }
}

/// A [`Coord`] iterator used by the `into_iter` method on a [`LineString`]
#[derive(Debug)]
pub struct CoordinatesIter<'a, T: CoordNum + 'a>(::core::slice::Iter<'a, Coord<T>>);

impl<'a, T: CoordNum> Iterator for CoordinatesIter<'a, T> {
    type Item = &'a Coord<T>;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
}

impl<'a, T: CoordNum> ExactSizeIterator for CoordinatesIter<'a, T> {
    fn len(&self) -> usize {
        self.0.len()
    }
}

impl<'a, T: CoordNum> DoubleEndedIterator for CoordinatesIter<'a, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.0.next_back()
    }
}

impl<T: CoordNum> LineString<T> {
    /// Instantiate Self from the raw content value
    pub fn new(value: Vec<Coord<T>>) -> Self {
        Self(value)
    }

    /// Return an iterator yielding the coordinates of a [`LineString`] as [`Point`]s
    #[deprecated(note = "Use points() instead")]
    pub fn points_iter(&self) -> PointsIter<T> {
        PointsIter(self.0.iter())
    }

    /// Return an iterator yielding the coordinates of a [`LineString`] as [`Point`]s
    pub fn points(&self) -> PointsIter<T> {
        PointsIter(self.0.iter())
    }

    /// Return an iterator yielding the members of a [`LineString`] as [`Coord`]s
    pub fn coords(&self) -> impl DoubleEndedIterator<Item = &Coord<T>> {
        self.0.iter()
    }

    /// Return an iterator yielding the coordinates of a [`LineString`] as mutable [`Coord`]s
    pub fn coords_mut(&mut self) -> impl DoubleEndedIterator<Item = &mut Coord<T>> {
        self.0.iter_mut()
    }

    /// Return the coordinates of a [`LineString`] as a [`Vec`] of [`Point`]s
    pub fn into_points(self) -> Vec<Point<T>> {
        self.0.into_iter().map(Point::from).collect()
    }

    /// Return the coordinates of a [`LineString`] as a [`Vec`] of [`Coord`]s
    pub fn into_inner(self) -> Vec<Coord<T>> {
        self.0
    }

    /// Return an iterator yielding one [Line] for each line segment
    /// in the [`LineString`].
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::{coord, Line, LineString};
    ///
    /// let mut coords = vec![(0., 0.), (5., 0.), (7., 9.)];
    /// let line_string: LineString<f32> = coords.into_iter().collect();
    ///
    /// let mut lines = line_string.lines();
    /// assert_eq!(
    ///     Some(Line::new(
    ///         coord! { x: 0., y: 0. },
    ///         coord! { x: 5., y: 0. }
    ///     )),
    ///     lines.next()
    /// );
    /// assert_eq!(
    ///     Some(Line::new(
    ///         coord! { x: 5., y: 0. },
    ///         coord! { x: 7., y: 9. }
    ///     )),
    ///     lines.next()
    /// );
    /// assert!(lines.next().is_none());
    /// ```
    pub fn lines(&'_ self) -> impl ExactSizeIterator<Item = Line<T>> + '_ {
        self.0.windows(2).map(|w| {
            // slice::windows(N) is guaranteed to yield a slice with exactly N elements
            unsafe { Line::new(*w.get_unchecked(0), *w.get_unchecked(1)) }
        })
    }

    /// An iterator which yields the coordinates of a [`LineString`] as [Triangle]s
    pub fn triangles(&'_ self) -> impl ExactSizeIterator<Item = Triangle<T>> + '_ {
        self.0.windows(3).map(|w| {
            // slice::windows(N) is guaranteed to yield a slice with exactly N elements
            unsafe {
                Triangle::new(
                    *w.get_unchecked(0),
                    *w.get_unchecked(1),
                    *w.get_unchecked(2),
                )
            }
        })
    }

    /// Close the [`LineString`]. Specifically, if the [`LineString`] has at least one [`Coord`], and
    /// the value of the first [`Coord`] **does not** equal the value of the last [`Coord`], then a
    /// new [`Coord`] is added to the end with the value of the first [`Coord`].
    pub fn close(&mut self) {
        if !self.is_closed() {
            // by definition, we treat empty LineString's as closed.
            debug_assert!(!self.0.is_empty());
            self.0.push(self.0[0]);
        }
    }

    /// Return the number of coordinates in the [`LineString`].
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::LineString;
    ///
    /// let mut coords = vec![(0., 0.), (5., 0.), (7., 9.)];
    /// let line_string: LineString<f32> = coords.into_iter().collect();
    ///
    /// # #[allow(deprecated)]
    /// # {
    /// assert_eq!(3, line_string.num_coords());
    /// # }
    /// ```
    #[deprecated(note = "Use geo::CoordsIter::coords_count instead")]
    pub fn num_coords(&self) -> usize {
        self.0.len()
    }

    /// Checks if the linestring is closed; i.e. it is
    /// either empty or, the first and last points are the
    /// same.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::LineString;
    ///
    /// let mut coords = vec![(0., 0.), (5., 0.), (0., 0.)];
    /// let line_string: LineString<f32> = coords.into_iter().collect();
    /// assert!(line_string.is_closed());
    /// ```
    ///
    /// Note that we diverge from some libraries ([JTS](https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/LinearRing.html) et al), which have a `LinearRing` type,
    /// separate from [`LineString`]. Those libraries treat an empty `LinearRing` as **closed** by
    /// definition, while treating an empty `LineString` as **open**. Since we don't have a separate
    /// `LinearRing` type, and use a [`LineString`] in its place, we adopt the JTS `LinearRing` `is_closed`
    /// behavior in all places: that is, **we consider an empty [`LineString`] as closed**.
    ///
    /// This is expected when used in the context of a [`Polygon.exterior`](crate::Polygon::exterior) and elsewhere; And there
    /// seems to be no reason to maintain the separate behavior for [`LineString`]s used in
    /// non-`LinearRing` contexts.
    pub fn is_closed(&self) -> bool {
        self.0.first() == self.0.last()
    }
}

/// Turn a [`Vec`] of [`Point`]-like objects into a [`LineString`].
impl<T: CoordNum, IC: Into<Coord<T>>> From<Vec<IC>> for LineString<T> {
    fn from(v: Vec<IC>) -> Self {
        Self(v.into_iter().map(|c| c.into()).collect())
    }
}

impl<T: CoordNum> From<Line<T>> for LineString<T> {
    fn from(line: Line<T>) -> Self {
        LineString::from(&line)
    }
}

impl<T: CoordNum> From<&Line<T>> for LineString<T> {
    fn from(line: &Line<T>) -> Self {
        Self(vec![line.start, line.end])
    }
}

/// Turn an iterator of [`Point`]-like objects into a [`LineString`].
impl<T: CoordNum, IC: Into<Coord<T>>> FromIterator<IC> for LineString<T> {
    fn from_iter<I: IntoIterator<Item = IC>>(iter: I) -> Self {
        Self(iter.into_iter().map(|c| c.into()).collect())
    }
}

/// Iterate over all the [`Coord`]s in this [`LineString`].
impl<T: CoordNum> IntoIterator for LineString<T> {
    type Item = Coord<T>;
    type IntoIter = ::alloc::vec::IntoIter<Coord<T>>;

    fn into_iter(self) -> Self::IntoIter {
        self.0.into_iter()
    }
}

impl<'a, T: CoordNum> IntoIterator for &'a LineString<T> {
    type Item = &'a Coord<T>;
    type IntoIter = CoordinatesIter<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        CoordinatesIter(self.0.iter())
    }
}

/// Mutably iterate over all the [`Coord`]s in this [`LineString`]
impl<'a, T: CoordNum> IntoIterator for &'a mut LineString<T> {
    type Item = &'a mut Coord<T>;
    type IntoIter = ::core::slice::IterMut<'a, Coord<T>>;

    fn into_iter(self) -> ::core::slice::IterMut<'a, Coord<T>> {
        self.0.iter_mut()
    }
}

impl<T: CoordNum> Index<usize> for LineString<T> {
    type Output = Coord<T>;

    fn index(&self, index: usize) -> &Coord<T> {
        self.0.index(index)
    }
}

impl<T: CoordNum> IndexMut<usize> for LineString<T> {
    fn index_mut(&mut self, index: usize) -> &mut Coord<T> {
        self.0.index_mut(index)
    }
}

#[cfg(any(feature = "approx", test))]
impl<T> RelativeEq for LineString<T>
where
    T: AbsDiffEq<Epsilon = T> + CoordNum + RelativeEq,
{
    #[inline]
    fn default_max_relative() -> Self::Epsilon {
        T::default_max_relative()
    }

    /// Equality assertion within a relative limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::LineString;
    ///
    /// let mut coords_a = vec![(0., 0.), (5., 0.), (7., 9.)];
    /// let a: LineString<f32> = coords_a.into_iter().collect();
    ///
    /// let mut coords_b = vec![(0., 0.), (5., 0.), (7.001, 9.)];
    /// let b: LineString<f32> = coords_b.into_iter().collect();
    ///
    /// approx::assert_relative_eq!(a, b, max_relative=0.1)
    /// ```
    ///
    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        if self.0.len() != other.0.len() {
            return false;
        }

        let points_zipper = self.points().zip(other.points());
        for (lhs, rhs) in points_zipper {
            if lhs.relative_ne(&rhs, epsilon, max_relative) {
                return false;
            }
        }

        true
    }
}

#[cfg(any(feature = "approx", test))]
impl<T: AbsDiffEq<Epsilon = T> + CoordNum> AbsDiffEq for LineString<T> {
    type Epsilon = T;

    #[inline]
    fn default_epsilon() -> Self::Epsilon {
        T::default_epsilon()
    }

    /// Equality assertion with an absolute limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::LineString;
    ///
    /// let mut coords_a = vec![(0., 0.), (5., 0.), (7., 9.)];
    /// let a: LineString<f32> = coords_a.into_iter().collect();
    ///
    /// let mut coords_b = vec![(0., 0.), (5., 0.), (7.001, 9.)];
    /// let b: LineString<f32> = coords_b.into_iter().collect();
    ///
    /// approx::assert_relative_eq!(a, b, epsilon=0.1)
    /// ```
    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        if self.0.len() != other.0.len() {
            return false;
        }
        let mut points_zipper = self.points().zip(other.points());
        points_zipper.all(|(lhs, rhs)| lhs.abs_diff_eq(&rhs, epsilon))
    }
}

#[cfg(any(
    feature = "rstar_0_8",
    feature = "rstar_0_9",
    feature = "rstar_0_10",
    feature = "rstar_0_11",
    feature = "rstar_0_12"
))]
macro_rules! impl_rstar_line_string {
    ($rstar:ident) => {
        impl<T> ::$rstar::RTreeObject for LineString<T>
        where
            T: ::num_traits::Float + ::$rstar::RTreeNum,
        {
            type Envelope = ::$rstar::AABB<Point<T>>;

            fn envelope(&self) -> Self::Envelope {
                use num_traits::Bounded;
                let bounding_rect = crate::private_utils::line_string_bounding_rect(self);
                match bounding_rect {
                    None => ::$rstar::AABB::from_corners(
                        Point::new(Bounded::min_value(), Bounded::min_value()),
                        Point::new(Bounded::max_value(), Bounded::max_value()),
                    ),
                    Some(b) => ::$rstar::AABB::from_corners(
                        Point::new(b.min().x, b.min().y),
                        Point::new(b.max().x, b.max().y),
                    ),
                }
            }
        }

        impl<T> ::$rstar::PointDistance for LineString<T>
        where
            T: ::num_traits::Float + ::$rstar::RTreeNum,
        {
            fn distance_2(&self, point: &Point<T>) -> T {
                let d = crate::private_utils::point_line_string_euclidean_distance(*point, self);
                if d == T::zero() {
                    d
                } else {
                    d.powi(2)
                }
            }
        }
    };
}

#[cfg(feature = "rstar_0_8")]
impl_rstar_line_string!(rstar_0_8);

#[cfg(feature = "rstar_0_9")]
impl_rstar_line_string!(rstar_0_9);

#[cfg(feature = "rstar_0_10")]
impl_rstar_line_string!(rstar_0_10);

#[cfg(feature = "rstar_0_11")]
impl_rstar_line_string!(rstar_0_11);

#[cfg(feature = "rstar_0_12")]
impl_rstar_line_string!(rstar_0_12);

#[cfg(test)]
mod test {
    use super::*;
    use crate::coord;
    use approx::AbsDiffEq;

    #[test]
    fn test_exact_size() {
        // see https://github.com/georust/geo/issues/762
        let first = coord! { x: 0., y: 0. };
        let ls = LineString::new(vec![first, coord! { x: 10., y: 0. }]);

        // reference to force the `impl IntoIterator for &LineString` impl, giving a `CoordinatesIter`
        for c in (&ls).into_iter().rev().skip(1).rev() {
            assert_eq!(&first, c);
        }
        for p in ls.points().rev().skip(1).rev() {
            assert_eq!(Point::from(first), p);
        }
    }

    #[test]
    fn test_abs_diff_eq() {
        let delta = 1e-6;

        let coords = vec![(0., 0.), (5., 0.), (10., 10.)];
        let ls: LineString<f32> = coords.into_iter().collect();

        let coords_x = vec![(0., 0.), (5. + delta, 0.), (10., 10.)];
        let ls_x: LineString<f32> = coords_x.into_iter().collect();
        assert!(ls.abs_diff_eq(&ls_x, 1e-2));
        assert!(ls.abs_diff_ne(&ls_x, 1e-12));

        let coords_y = vec![(0., 0.), (5., 0. + delta), (10., 10.)];
        let ls_y: LineString<f32> = coords_y.into_iter().collect();
        assert!(ls.abs_diff_eq(&ls_y, 1e-2));
        assert!(ls.abs_diff_ne(&ls_y, 1e-12));

        // Undersized, but otherwise equal.
        let coords_x = vec![(0., 0.), (5., 0.)];
        let ls_under: LineString<f32> = coords_x.into_iter().collect();
        assert!(ls.abs_diff_ne(&ls_under, 1.));

        // Oversized, but otherwise equal.
        let coords_x = vec![(0., 0.), (5., 0.), (10., 10.), (10., 100.)];
        let ls_oversized: LineString<f32> = coords_x.into_iter().collect();
        assert!(ls.abs_diff_ne(&ls_oversized, 1.));
    }

    #[test]
    fn test_relative_eq() {
        let delta = 1e-6;

        let coords = vec![(0., 0.), (5., 0.), (10., 10.)];
        let ls: LineString<f32> = coords.into_iter().collect();

        let coords_x = vec![(0., 0.), (5. + delta, 0.), (10., 10.)];
        let ls_x: LineString<f32> = coords_x.into_iter().collect();
        assert!(ls.relative_eq(&ls_x, 1e-2, 1e-2));
        assert!(ls.relative_ne(&ls_x, 1e-12, 1e-12));

        let coords_y = vec![(0., 0.), (5., 0. + delta), (10., 10.)];
        let ls_y: LineString<f32> = coords_y.into_iter().collect();
        assert!(ls.relative_eq(&ls_y, 1e-2, 1e-2));
        assert!(ls.relative_ne(&ls_y, 1e-12, 1e-12));

        // Undersized, but otherwise equal.
        let coords_x = vec![(0., 0.), (5., 0.)];
        let ls_under: LineString<f32> = coords_x.into_iter().collect();
        assert!(ls.relative_ne(&ls_under, 1., 1.));

        // Oversized, but otherwise equal.
        let coords_x = vec![(0., 0.), (5., 0.), (10., 10.), (10., 100.)];
        let ls_oversized: LineString<f32> = coords_x.into_iter().collect();
        assert!(ls.relative_ne(&ls_oversized, 1., 1.));
    }

    #[test]
    fn should_be_built_from_line() {
        let start = coord! { x: 0, y: 0 };
        let end = coord! { x: 10, y: 10 };
        let line = Line::new(start, end);
        let expected = LineString::new(vec![start, end]);

        assert_eq!(expected, LineString::from(line));

        let start = coord! { x: 10., y: 0.5 };
        let end = coord! { x: 10000., y: 10.4 };
        let line = Line::new(start, end);
        let expected = LineString::new(vec![start, end]);

        assert_eq!(expected, LineString::from(line));
    }
}