cranelift_assembler_x64/rex.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
//! Encoding logic for REX instructions.
// #![allow(clippy::bool_to_int_with_if)]
use crate::api::CodeSink;
pub(crate) fn low8_will_sign_extend_to_32(xs: i32) -> bool {
xs == ((xs << 24) >> 24)
}
/// Encode the ModR/M byte.
#[inline]
pub fn encode_modrm(m0d: u8, enc_reg_g: u8, rm_e: u8) -> u8 {
debug_assert!(m0d < 4);
debug_assert!(enc_reg_g < 8);
debug_assert!(rm_e < 8);
((m0d & 3) << 6) | ((enc_reg_g & 7) << 3) | (rm_e & 7)
}
/// Encode the SIB byte (scale-index-base).
#[inline]
pub fn encode_sib(scale: u8, enc_index: u8, enc_base: u8) -> u8 {
debug_assert!(scale < 4);
debug_assert!(enc_index < 8);
debug_assert!(enc_base < 8);
((scale & 3) << 6) | ((enc_index & 7) << 3) | (enc_base & 7)
}
/// A small bit field to record a REX prefix specification:
/// - bit 0 set to 1 indicates REX.W must be 0 (cleared).
/// - bit 1 set to 1 indicates the REX prefix must always be emitted.
#[repr(transparent)]
#[derive(Clone, Copy)]
pub struct RexFlags(u8);
impl RexFlags {
/// By default, set the W field, and don't always emit.
#[inline]
#[must_use]
pub fn set_w() -> Self {
Self(0)
}
/// Creates a new REX prefix for which the REX.W bit will be cleared.
#[inline]
#[must_use]
pub fn clear_w() -> Self {
Self(1)
}
/// True if 64-bit operands are used.
#[inline]
#[must_use]
pub fn must_clear_w(self) -> bool {
(self.0 & 1) != 0
}
/// Require that the REX prefix is emitted.
#[inline]
pub fn always_emit(&mut self) -> &mut Self {
self.0 |= 2;
self
}
/// True if the REX prefix must always be emitted.
#[inline]
#[must_use]
pub fn must_always_emit(self) -> bool {
(self.0 & 2) != 0
}
/// Force emission of the REX byte if the register is: `rsp`, `rbp`, `rsi`,
/// `rdi`.
pub fn always_emit_if_8bit_needed(&mut self, enc: u8) {
if (4..=7).contains(&enc) {
self.always_emit();
}
}
/// Emit a unary instruction.
#[inline]
pub fn emit_one_op(self, sink: &mut impl CodeSink, enc_e: u8) {
// Register Operand coded in Opcode Byte
// REX.R and REX.X unused
// REX.B == 1 accesses r8-r15
let w = if self.must_clear_w() { 0 } else { 1 };
let r = 0;
let x = 0;
let b = (enc_e >> 3) & 1;
let rex = 0x40 | (w << 3) | (r << 2) | (x << 1) | b;
if rex != 0x40 || self.must_always_emit() {
sink.put1(rex);
}
}
/// Emit a binary instruction.
#[inline]
pub fn emit_two_op(self, sink: &mut impl CodeSink, enc_g: u8, enc_e: u8) {
let w = if self.must_clear_w() { 0 } else { 1 };
let r = (enc_g >> 3) & 1;
let x = 0;
let b = (enc_e >> 3) & 1;
let rex = 0x40 | (w << 3) | (r << 2) | (x << 1) | b;
if rex != 0x40 || self.must_always_emit() {
sink.put1(rex);
}
}
/// Emit a ternary instruction.
#[inline]
pub fn emit_three_op(self, sink: &mut impl CodeSink, enc_g: u8, enc_index: u8, enc_base: u8) {
let w = if self.must_clear_w() { 0 } else { 1 };
let r = (enc_g >> 3) & 1;
let x = (enc_index >> 3) & 1;
let b = (enc_base >> 3) & 1;
let rex = 0x40 | (w << 3) | (r << 2) | (x << 1) | b;
if rex != 0x40 || self.must_always_emit() {
sink.put1(rex);
}
}
}
#[derive(Copy, Clone)]
#[allow(missing_docs, reason = "variants are self-explanatory")]
pub enum Imm {
None,
Imm8(i8),
Imm32(i32),
}
impl Imm {
/// Classifies the 32-bit immediate `val` as how this can be encoded
/// with ModRM/SIB bytes.
///
/// For `evex_scaling` according to Section 2.7.5 of Intel's manual:
///
/// > EVEX-encoded instructions always use a compressed displacement scheme
/// > by multiplying disp8 in conjunction with a scaling factor N that is
/// > determined based on the vector length, the value of EVEX.b bit
/// > (embedded broadcast) and the input element size of the instruction
///
/// The `evex_scaling` factor provided here is `Some(N)` for EVEX
/// instructions. This is taken into account where the `Imm` value
/// contained is the raw byte offset.
pub fn new(val: i32, evex_scaling: Option<i8>) -> Imm {
if val == 0 {
return Imm::None;
}
match evex_scaling {
Some(scaling) => {
if val % i32::from(scaling) == 0 {
let scaled = val / i32::from(scaling);
if low8_will_sign_extend_to_32(scaled) {
#[allow(clippy::cast_possible_truncation, reason = "pre-existing code")]
return Imm::Imm8(scaled as i8);
}
}
Imm::Imm32(val)
}
None => match i8::try_from(val) {
Ok(val) => Imm::Imm8(val),
Err(_) => Imm::Imm32(val),
},
}
}
/// Forces `Imm::None` to become `Imm::Imm8(0)`, used for special cases
/// where some base registers require an immediate.
pub fn force_immediate(&mut self) {
if let Imm::None = self {
*self = Imm::Imm8(0);
}
}
/// Returns the two "mod" bits present at the upper bits of the mod/rm
/// byte.
pub fn m0d(self) -> u8 {
match self {
Imm::None => 0b00,
Imm::Imm8(_) => 0b01,
Imm::Imm32(_) => 0b10,
}
}
/// Emit the truncated immediate into the code sink.
#[allow(clippy::cast_sign_loss, reason = "bit conversion is intended here")]
pub fn emit(self, sink: &mut impl CodeSink) {
match self {
Imm::None => {}
Imm::Imm8(n) => sink.put1(n as u8),
Imm::Imm32(n) => sink.put4(n as u32),
}
}
}