wasmtime/runtime/vm/
mmap_vec.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
use crate::prelude::*;
#[cfg(not(has_virtual_memory))]
use crate::runtime::vm::send_sync_ptr::SendSyncPtr;
#[cfg(has_virtual_memory)]
use crate::runtime::vm::{mmap::UnalignedLength, Mmap};
#[cfg(not(has_virtual_memory))]
use alloc::alloc::Layout;
use alloc::sync::Arc;
use core::ops::{Deref, Range};
#[cfg(not(has_virtual_memory))]
use core::ptr::NonNull;
#[cfg(feature = "std")]
use std::fs::File;

/// A type which prefers to store backing memory in an OS-backed memory mapping
/// but can fall back to the regular memory allocator as well.
///
/// This type is used to store code in Wasmtime and manage read-only and
/// executable permissions of compiled images. This is created from either an
/// in-memory compilation or by deserializing an artifact from disk. Methods
/// are provided for managing VM permissions when the `signals-based-traps`
/// Cargo feature is enabled.
///
/// The length of an `MmapVec` is not guaranteed to be page-aligned. That means
/// that if the contents are not themselves page-aligned, which compiled images
/// are typically not, then the remaining bytes in the final page for
/// mmap-backed instances are unused.
///
/// Note that when `signals-based-traps` is disabled then this type is
/// backed by the regular memory allocator via `alloc` APIs. In such a
/// scenario this type does not support read-only or executable bits
/// and the methods are not available. However, the `CustomCodeMemory`
/// mechanism may be used by the embedder to set up and tear down
/// executable permissions on parts of this storage.
pub enum MmapVec {
    #[doc(hidden)]
    #[cfg(not(has_virtual_memory))]
    Alloc {
        base: SendSyncPtr<u8>,
        layout: Layout,
    },
    #[doc(hidden)]
    #[cfg(has_virtual_memory)]
    Mmap {
        mmap: Mmap<UnalignedLength>,
        len: usize,
    },
}

impl MmapVec {
    /// Consumes an existing `mmap` and wraps it up into an `MmapVec`.
    ///
    /// The returned `MmapVec` will have the `size` specified, which can be
    /// smaller than the region mapped by the `Mmap`. The returned `MmapVec`
    /// will only have at most `size` bytes accessible.
    #[cfg(has_virtual_memory)]
    fn new_mmap<M>(mmap: M, len: usize) -> MmapVec
    where
        M: Into<Mmap<UnalignedLength>>,
    {
        let mmap = mmap.into();
        assert!(len <= mmap.len());
        MmapVec::Mmap { mmap, len }
    }

    #[cfg(not(has_virtual_memory))]
    fn new_alloc(len: usize, alignment: usize) -> MmapVec {
        let layout = Layout::from_size_align(len, alignment)
            .expect("Invalid size or alignment for MmapVec allocation");
        let base = SendSyncPtr::new(
            NonNull::new(unsafe { alloc::alloc::alloc_zeroed(layout.clone()) })
                .expect("Allocation of MmapVec storage failed"),
        );
        MmapVec::Alloc { base, layout }
    }

    /// Creates a new zero-initialized `MmapVec` with the given `size`
    /// and `alignment`.
    ///
    /// This commit will return a new `MmapVec` suitably sized to hold `size`
    /// bytes. All bytes will be initialized to zero since this is a fresh OS
    /// page allocation.
    pub fn with_capacity_and_alignment(size: usize, alignment: usize) -> Result<MmapVec> {
        #[cfg(has_virtual_memory)]
        {
            assert!(alignment <= crate::runtime::vm::host_page_size());
            return Ok(MmapVec::new_mmap(Mmap::with_at_least(size)?, size));
        }
        #[cfg(not(has_virtual_memory))]
        {
            return Ok(MmapVec::new_alloc(size, alignment));
        }
    }

    /// Creates a new `MmapVec` from the contents of an existing `slice`.
    ///
    /// A new `MmapVec` is allocated to hold the contents of `slice` and then
    /// `slice` is copied into the new mmap. It's recommended to avoid this
    /// method if possible to avoid the need to copy data around.
    pub fn from_slice(slice: &[u8]) -> Result<MmapVec> {
        MmapVec::from_slice_with_alignment(slice, 1)
    }

    /// Creates a new `MmapVec` from the contents of an existing
    /// `slice`, with a minimum alignment.
    ///
    /// `align` must be a power of two. This is useful when page
    /// alignment is required when the system otherwise does not use
    /// virtual memory but has a custom code publish handler.
    ///
    /// A new `MmapVec` is allocated to hold the contents of `slice` and then
    /// `slice` is copied into the new mmap. It's recommended to avoid this
    /// method if possible to avoid the need to copy data around.  pub
    pub fn from_slice_with_alignment(slice: &[u8], align: usize) -> Result<MmapVec> {
        let mut result = MmapVec::with_capacity_and_alignment(slice.len(), align)?;
        // SAFETY: The mmap hasn't been made readonly yet so this should be
        // safe to call.
        unsafe {
            result.as_mut_slice().copy_from_slice(slice);
        }
        Ok(result)
    }

    /// Creates a new `MmapVec` which is the given `File` mmap'd into memory.
    ///
    /// This function will determine the file's size and map the full contents
    /// into memory. This will return an error if the file is too large to be
    /// fully mapped into memory.
    ///
    /// The file is mapped into memory with a "private mapping" meaning that
    /// changes are not persisted back to the file itself and are only visible
    /// within this process.
    #[cfg(feature = "std")]
    pub fn from_file(file: File) -> Result<MmapVec> {
        let file = Arc::new(file);
        let mmap = Mmap::from_file(Arc::clone(&file))
            .with_context(move || format!("failed to create mmap for file {file:?}"))?;
        let len = mmap.len();
        Ok(MmapVec::new_mmap(mmap, len))
    }

    /// Makes the specified `range` within this `mmap` to be read/execute.
    #[cfg(has_virtual_memory)]
    pub unsafe fn make_executable(
        &self,
        range: Range<usize>,
        enable_branch_protection: bool,
    ) -> Result<()> {
        let (mmap, len) = match self {
            MmapVec::Mmap { mmap, len } => (mmap, *len),
        };
        assert!(range.start <= range.end);
        assert!(range.end <= len);
        mmap.make_executable(range.start..range.end, enable_branch_protection)
    }

    /// Makes the specified `range` within this `mmap` to be read-only.
    #[cfg(has_virtual_memory)]
    pub unsafe fn make_readonly(&self, range: Range<usize>) -> Result<()> {
        let (mmap, len) = match self {
            MmapVec::Mmap { mmap, len } => (mmap, *len),
        };
        assert!(range.start <= range.end);
        assert!(range.end <= len);
        mmap.make_readonly(range.start..range.end)
    }

    /// Returns the underlying file that this mmap is mapping, if present.
    #[cfg(feature = "std")]
    pub fn original_file(&self) -> Option<&Arc<File>> {
        match self {
            #[cfg(not(has_virtual_memory))]
            MmapVec::Alloc { .. } => None,
            #[cfg(has_virtual_memory)]
            MmapVec::Mmap { mmap, .. } => mmap.original_file(),
        }
    }

    /// Returns the bounds, in host memory, of where this mmap
    /// image resides.
    pub fn image_range(&self) -> Range<*const u8> {
        let base = self.as_ptr();
        let len = self.len();
        base..base.wrapping_add(len)
    }

    /// Views this region of memory as a mutable slice.
    ///
    /// # Unsafety
    ///
    /// This method is only safe if `make_readonly` hasn't been called yet to
    /// ensure that the memory is indeed writable
    pub unsafe fn as_mut_slice(&mut self) -> &mut [u8] {
        match self {
            #[cfg(not(has_virtual_memory))]
            MmapVec::Alloc { base, layout } => {
                core::slice::from_raw_parts_mut(base.as_mut(), layout.size())
            }
            #[cfg(has_virtual_memory)]
            MmapVec::Mmap { mmap, len } => mmap.slice_mut(0..*len),
        }
    }
}

impl Deref for MmapVec {
    type Target = [u8];

    #[inline]
    fn deref(&self) -> &[u8] {
        match self {
            #[cfg(not(has_virtual_memory))]
            MmapVec::Alloc { base, layout } => unsafe {
                core::slice::from_raw_parts(base.as_ptr(), layout.size())
            },
            #[cfg(has_virtual_memory)]
            MmapVec::Mmap { mmap, len } => {
                // SAFETY: all bytes for this mmap, which is owned by
                // `MmapVec`, are always at least readable.
                unsafe { mmap.slice(0..*len) }
            }
        }
    }
}

impl Drop for MmapVec {
    fn drop(&mut self) {
        match self {
            #[cfg(not(has_virtual_memory))]
            MmapVec::Alloc { base, layout, .. } => unsafe {
                alloc::alloc::dealloc(base.as_mut(), layout.clone());
            },
            #[cfg(has_virtual_memory)]
            MmapVec::Mmap { .. } => {
                // Drop impl on the `mmap` takes care of this case.
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::MmapVec;

    #[test]
    fn smoke() {
        let mut mmap = MmapVec::with_capacity_and_alignment(10, 1).unwrap();
        assert_eq!(mmap.len(), 10);
        assert_eq!(&mmap[..], &[0; 10]);

        unsafe {
            mmap.as_mut_slice()[0] = 1;
            mmap.as_mut_slice()[2] = 3;
        }
        assert!(mmap.get(10).is_none());
        assert_eq!(mmap[0], 1);
        assert_eq!(mmap[2], 3);
    }

    #[test]
    fn alignment() {
        let mmap = MmapVec::with_capacity_and_alignment(10, 4096).unwrap();
        let raw_ptr = &mmap[0] as *const _ as usize;
        assert_eq!(raw_ptr & (4096 - 1), 0);
    }
}