wasmtime/runtime/vm/gc/enabled/
drc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
//! The deferred reference-counting (DRC) collector.
//!
//! Warning: this ref-counting collector does not have a tracing cycle
//! collector, and therefore cannot collect cycles between GC objects!
//!
//! For host VM code, we use plain reference counting, where cloning increments
//! the reference count, and dropping decrements it. We can avoid many of the
//! on-stack increment/decrement operations that typically plague the
//! performance of reference counting via Rust's ownership and borrowing system.
//! Moving a `VMGcRef` avoids mutating its reference count, and borrowing it
//! either avoids the reference count increment or delays it until if/when the
//! `VMGcRef` is cloned.
//!
//! When passing a `VMGcRef` into compiled Wasm code, we don't want to do
//! reference count mutations for every compiled `local.{get,set}`, nor for
//! every function call. Therefore, we use a variation of **deferred reference
//! counting**, where we only mutate reference counts when storing `VMGcRef`s
//! somewhere that outlives the Wasm activation: into a global or
//! table. Simultaneously, we over-approximate the set of `VMGcRef`s that are
//! inside Wasm function activations. Periodically, we walk the stack at GC safe
//! points, and use stack map information to precisely identify the set of
//! `VMGcRef`s inside Wasm activations. Then we take the difference between this
//! precise set and our over-approximation, and decrement the reference count
//! for each of the `VMGcRef`s that are in our over-approximation but not in the
//! precise set. Finally, the over-approximation is replaced with the precise
//! set.
//!
//! The `VMGcRefActivationsTable` implements the over-approximized set of
//! `VMGcRef`s referenced by Wasm activations. Calling a Wasm function and
//! passing it a `VMGcRef` moves the `VMGcRef` into the table, and the compiled
//! Wasm function logically "borrows" the `VMGcRef` from the table. Similarly,
//! `global.get` and `table.get` operations clone the gotten `VMGcRef` into the
//! `VMGcRefActivationsTable` and then "borrow" the reference out of the table.
//!
//! When a `VMGcRef` is returned to host code from a Wasm function, the host
//! increments the reference count (because the reference is logically
//! "borrowed" from the `VMGcRefActivationsTable` and the reference count from
//! the table will be dropped at the next GC).
//!
//! For more general information on deferred reference counting, see *An
//! Examination of Deferred Reference Counting and Cycle Detection* by Quinane:
//! <https://openresearch-repository.anu.edu.au/bitstream/1885/42030/2/hon-thesis.pdf>

use super::free_list::FreeList;
use super::{VMArrayRef, VMGcObjectDataMut, VMStructRef};
use crate::hash_set::HashSet;
use crate::prelude::*;
use crate::runtime::vm::{
    mmap::AlignedLength, ExternRefHostDataId, ExternRefHostDataTable, GarbageCollection, GcHeap,
    GcHeapObject, GcProgress, GcRootsIter, GcRuntime, Mmap, TypedGcRef, VMExternRef, VMGcHeader,
    VMGcRef,
};
use core::ops::{Deref, DerefMut, Range};
use core::{
    alloc::Layout,
    any::Any,
    cell::UnsafeCell,
    mem,
    num::NonZeroUsize,
    ptr::{self, NonNull},
};
use wasmtime_environ::drc::DrcTypeLayouts;
use wasmtime_environ::{GcArrayLayout, GcStructLayout, GcTypeLayouts, VMGcKind, VMSharedTypeIndex};

/// The deferred reference-counting (DRC) collector.
///
/// This reference-counting collector does not have a cycle collector, and so it
/// will not be able to reclaim garbage cycles.
///
/// This is not a moving collector; it doesn't have a nursery or do any
/// compaction.
#[derive(Default)]
pub struct DrcCollector {
    layouts: DrcTypeLayouts,
}

unsafe impl GcRuntime for DrcCollector {
    fn layouts(&self) -> &dyn GcTypeLayouts {
        &self.layouts
    }

    fn new_gc_heap(&self) -> Result<Box<dyn GcHeap>> {
        let heap = DrcHeap::new()?;
        Ok(Box::new(heap) as _)
    }
}

/// A deferred reference-counting (DRC) heap.
struct DrcHeap {
    no_gc_count: u64,
    // NB: this box shouldn't be strictly necessary, but it makes upholding the
    // safety invariants of the `vmctx_gc_heap_data` more obviously correct.
    activations_table: Box<VMGcRefActivationsTable>,
    heap: Mmap<AlignedLength>,
    free_list: FreeList,
}

impl DrcHeap {
    /// Construct a new, default DRC heap.
    fn new() -> Result<Self> {
        Self::with_capacity(super::DEFAULT_GC_HEAP_CAPACITY)
    }

    /// Create a new DRC heap with the given capacity.
    fn with_capacity(capacity: usize) -> Result<Self> {
        let heap = Mmap::with_at_least(capacity)?;
        let free_list = FreeList::new(heap.len());
        Ok(Self {
            no_gc_count: 0,
            activations_table: Box::new(VMGcRefActivationsTable::default()),
            heap,
            free_list,
        })
    }

    fn dealloc(&mut self, gc_ref: VMGcRef) {
        let drc_ref = drc_ref(&gc_ref);
        let size = self.index(drc_ref).object_size();
        let layout = FreeList::layout(size);
        self.free_list
            .dealloc(gc_ref.as_heap_index().unwrap(), layout);
    }

    fn object_range(&self, gc_ref: &VMGcRef) -> Range<usize> {
        let start = gc_ref.as_heap_index().unwrap().get();
        let start = usize::try_from(start).unwrap();
        let size = self
            .index::<VMDrcHeader>(gc_ref.as_typed_unchecked())
            .object_size();
        let end = start.checked_add(size).unwrap();
        start..end
    }

    /// Increment the ref count for the associated object.
    fn inc_ref(&mut self, gc_ref: &VMGcRef) {
        if gc_ref.is_i31() {
            return;
        }

        let drc_ref = drc_ref(gc_ref);
        let header = self.index_mut(&drc_ref);
        debug_assert_ne!(
            *header.ref_count.get_mut(),
            0,
            "{:#p} is supposedly live; should have nonzero ref count",
            *gc_ref
        );
        *header.ref_count.get_mut() += 1;
        log::trace!(
            "increment {:#p} ref count -> {}",
            *gc_ref,
            header.ref_count.get_mut()
        );
    }

    /// Decrement the ref count for the associated object.
    ///
    /// Returns `true` if the ref count reached zero and the object should be
    /// deallocated.
    fn dec_ref(&mut self, gc_ref: &VMGcRef) -> bool {
        if gc_ref.is_i31() {
            return false;
        }

        let drc_ref = drc_ref(gc_ref);
        let header = self.index_mut(drc_ref);
        debug_assert_ne!(
            *header.ref_count.get_mut(),
            0,
            "{:#p} is supposedly live; should have nonzero ref count",
            *gc_ref
        );
        *header.ref_count.get_mut() -= 1;
        log::trace!(
            "decrement {:#p} ref count -> {}",
            *gc_ref,
            header.ref_count.get_mut()
        );
        *header.ref_count.get_mut() == 0
    }

    /// Decrement the ref count for the associated object.
    ///
    /// If the ref count reached zero, then deallocate the object and remove its
    /// associated entry from the `host_data_table` if necessary.
    fn dec_ref_and_maybe_dealloc(
        &mut self,
        host_data_table: &mut ExternRefHostDataTable,
        gc_ref: &VMGcRef,
    ) {
        if self.dec_ref(gc_ref) {
            // If this was an `externref`, remove its associated entry from
            // the host data table.
            if let Some(externref) = gc_ref.as_typed::<VMDrcExternRef>(self) {
                let host_data_id = self.index(externref).host_data;
                host_data_table.dealloc(host_data_id);
            }

            // TODO: `dec_ref_and_maybe_dealloc` each `VMGcRef` inside this
            // object.

            // Deallocate this GC object.
            self.dealloc(gc_ref.unchecked_copy());
        }
    }

    fn trace(&mut self, roots: &mut GcRootsIter<'_>) {
        debug_assert!({
            // This set is only non-empty during collection. It is built up when
            // tracing roots, and then drained back into the activations table's
            // bump-allocated space at the end. Therefore, it should always be
            // empty upon beginning tracing, which is the start of collection.
            self.activations_table.precise_stack_roots.is_empty()
        });

        // The `activations_table_set` is used for `debug_assert!`s checking that
        // every reference we read out from the stack via stack maps is actually in
        // the table. If that weren't true, than either we forgot to insert a
        // reference in the table when passing it into Wasm (a bug) or we are
        // reading invalid references from the stack (another bug).
        let mut activations_table_set: DebugOnly<HashSet<_>> = Default::default();
        if cfg!(debug_assertions) {
            self.activations_table.elements(|elem| {
                activations_table_set.insert(elem.unchecked_copy());
            });
        }

        for root in roots {
            if !root.is_on_wasm_stack() {
                // We only trace on-Wasm-stack GC roots. These are the
                // GC references that we do deferred ref counting for
                // and that get inserted into our activations
                // table. Other GC roots are managed purely with naive
                // ref counting.
                continue;
            }

            let gc_ref = root.get();
            debug_assert!(
                gc_ref.is_i31() || activations_table_set.contains(&gc_ref),
                "every on-stack gc_ref inside a Wasm frame should \
                 have an entry in the VMGcRefActivationsTable; \
                 {gc_ref:#p} is not in the table",
            );
            if gc_ref.is_i31() {
                continue;
            }

            debug_assert_ne!(
                *self.index_mut(drc_ref(&gc_ref)).ref_count.get_mut(),
                0,
                "{gc_ref:#p} is on the Wasm stack and therefore should be held \
                 by the activations table; should have nonzero ref count",
            );

            log::trace!("Found GC reference on the stack: {:#p}", gc_ref);
            let is_new = self
                .activations_table
                .precise_stack_roots
                .insert(gc_ref.unchecked_copy());
            if is_new {
                self.inc_ref(&gc_ref);
            }
        }
    }

    fn iter_bump_chunk(&mut self) -> impl Iterator<Item = VMGcRef> + '_ {
        let num_filled = self.activations_table.num_filled_in_bump_chunk();
        self.activations_table
            .alloc
            .chunk
            .iter_mut()
            .take(num_filled)
            .map(|slot| {
                let raw = *slot.get_mut();
                VMGcRef::from_raw_u32(raw).expect("non-null")
            })
    }

    #[inline(never)]
    #[cold]
    fn log_gc_ref_set(prefix: &str, items: impl Iterator<Item = VMGcRef>) {
        assert!(log::log_enabled!(log::Level::Trace));
        let mut set = "{".to_string();
        let mut any = false;
        for gc_ref in items {
            any = true;
            set += &format!("\n  {gc_ref:#p},");
        }
        if any {
            set.push('\n');
        }
        set.push('}');
        log::trace!("{prefix}: {set}");
    }

    fn drain_bump_chunk(&mut self, mut f: impl FnMut(&mut Self, VMGcRef)) {
        let num_filled = self.activations_table.num_filled_in_bump_chunk();

        // Temporarily take the allocation out of `self` to avoid conflicting
        // borrows.
        let mut alloc = mem::take(&mut self.activations_table.alloc);
        for slot in alloc.chunk.iter_mut().take(num_filled) {
            let raw = mem::take(slot.get_mut());
            let gc_ref = VMGcRef::from_raw_u32(raw).expect("non-null");
            f(self, gc_ref);
            *slot.get_mut() = 0;
        }

        debug_assert!(
            alloc.chunk.iter_mut().all(|slot| *slot.get_mut() == 0),
            "after sweeping the bump chunk, all slots should be empty",
        );

        debug_assert!(self.activations_table.alloc.chunk.is_empty());
        self.activations_table.alloc = alloc;
    }

    /// Sweep the bump allocation table after we've discovered our precise stack
    /// roots.
    fn sweep(&mut self, host_data_table: &mut ExternRefHostDataTable) {
        if log::log_enabled!(log::Level::Trace) {
            Self::log_gc_ref_set("bump chunk before sweeping", self.iter_bump_chunk());
        }

        // Sweep our bump chunk.
        log::trace!("Begin sweeping bump chunk");
        self.drain_bump_chunk(|heap, gc_ref| {
            heap.dec_ref_and_maybe_dealloc(host_data_table, &gc_ref);
        });
        log::trace!("Done sweeping bump chunk");

        if self.activations_table.alloc.chunk.is_empty() {
            // If this is the first collection, then the bump chunk is empty
            // since we lazily allocate it. Force that lazy allocation now so we
            // have fast bump-allocation in the future.
            self.activations_table.alloc.force_allocation();
        } else {
            // Reset our `next` finger to the start of the bump allocation chunk.
            self.activations_table.alloc.reset();
        }

        if log::log_enabled!(log::Level::Trace) {
            Self::log_gc_ref_set(
                "hash set before sweeping",
                self.activations_table
                    .over_approximated_stack_roots
                    .iter()
                    .map(|r| r.unchecked_copy()),
            );
        }

        // The current `precise_stack_roots` becomes our new over-appoximated
        // set for the next GC cycle.
        mem::swap(
            &mut self.activations_table.precise_stack_roots,
            &mut self.activations_table.over_approximated_stack_roots,
        );

        // And finally, the new `precise_stack_roots` should be cleared and
        // remain empty until the next GC cycle.
        //
        // Note that this may run arbitrary code as we run gc_ref
        // destructors. Because of our `&mut` borrow above on this table,
        // though, we're guaranteed that nothing will touch this table.
        log::trace!("Begin sweeping hash set");
        let mut precise_stack_roots = mem::take(&mut self.activations_table.precise_stack_roots);
        for gc_ref in precise_stack_roots.drain() {
            self.dec_ref_and_maybe_dealloc(host_data_table, &gc_ref);
        }
        log::trace!("Done sweeping hash set");

        // Make sure to replace the `precise_stack_roots` so that we reuse any
        // allocated capacity.
        self.activations_table.precise_stack_roots = precise_stack_roots;

        if log::log_enabled!(log::Level::Trace) {
            Self::log_gc_ref_set(
                "hash set after sweeping",
                self.activations_table
                    .over_approximated_stack_roots
                    .iter()
                    .map(|r| r.unchecked_copy()),
            );
        }
    }
}

/// Convert the given GC reference as a typed GC reference pointing to a
/// `VMDrcHeader`.
fn drc_ref(gc_ref: &VMGcRef) -> &TypedGcRef<VMDrcHeader> {
    debug_assert!(!gc_ref.is_i31());
    gc_ref.as_typed_unchecked()
}

/// Convert a generic `externref` to a typed reference to our concrete
/// `externref` type.
fn externref_to_drc(externref: &VMExternRef) -> &TypedGcRef<VMDrcExternRef> {
    let gc_ref = externref.as_gc_ref();
    debug_assert!(!gc_ref.is_i31());
    gc_ref.as_typed_unchecked()
}

/// The common header for all objects in the DRC collector.
///
/// This adds a ref count on top collector-agnostic `VMGcHeader`.
///
/// This is accessed by JIT code.
#[repr(C)]
struct VMDrcHeader {
    header: VMGcHeader,
    ref_count: UnsafeCell<u64>,
}

// Although this contains an `UnsafeCell`, that is just for allowing the field
// to be written to by JIT code, and it is only read/modified when we have
// access to an appropriate borrow of the heap.
unsafe impl Send for VMDrcHeader {}
unsafe impl Sync for VMDrcHeader {}

unsafe impl GcHeapObject for VMDrcHeader {
    #[inline]
    fn is(_header: &VMGcHeader) -> bool {
        // All DRC objects have a DRC header.
        true
    }
}

impl VMDrcHeader {
    /// The size of this header's object.
    ///
    /// This is stored in the inner `VMGcHeader`'s reserved bits.
    fn object_size(&self) -> usize {
        let size = self.header.reserved_u27();
        usize::try_from(size).unwrap()
    }
}

/// The common header for all arrays in the DRC collector.
#[repr(C)]
struct VMDrcArrayHeader {
    header: VMDrcHeader,
    length: u32,
}

unsafe impl GcHeapObject for VMDrcArrayHeader {
    #[inline]
    fn is(header: &VMGcHeader) -> bool {
        header.kind() == VMGcKind::ArrayRef
    }
}

/// The representation of an `externref` in the DRC collector.
#[repr(C)]
struct VMDrcExternRef {
    header: VMDrcHeader,
    host_data: ExternRefHostDataId,
}

unsafe impl GcHeapObject for VMDrcExternRef {
    #[inline]
    fn is(header: &VMGcHeader) -> bool {
        header.kind() == VMGcKind::ExternRef
    }
}

unsafe impl GcHeap for DrcHeap {
    fn as_any(&self) -> &dyn Any {
        self as _
    }

    fn as_any_mut(&mut self) -> &mut dyn Any {
        self as _
    }

    fn enter_no_gc_scope(&mut self) {
        self.no_gc_count += 1;
    }

    fn exit_no_gc_scope(&mut self) {
        self.no_gc_count -= 1;
    }

    fn clone_gc_ref(&mut self, gc_ref: &VMGcRef) -> VMGcRef {
        self.inc_ref(gc_ref);
        gc_ref.unchecked_copy()
    }

    fn write_gc_ref(
        &mut self,
        host_data_table: &mut ExternRefHostDataTable,
        destination: &mut Option<VMGcRef>,
        source: Option<&VMGcRef>,
    ) {
        // Increment the ref count of the object being written into the slot.
        if let Some(src) = source {
            self.inc_ref(src);
        }

        // Decrement the ref count of the value being overwritten and, if
        // necessary, deallocate the GC object.
        if let Some(dest) = destination {
            self.dec_ref_and_maybe_dealloc(host_data_table, dest);
        }

        // Do the actual write.
        *destination = source.map(|s| s.unchecked_copy());
    }

    fn expose_gc_ref_to_wasm(&mut self, gc_ref: VMGcRef) {
        self.activations_table.insert_without_gc(gc_ref);
    }

    fn need_gc_before_entering_wasm(&self, num_gc_refs: NonZeroUsize) -> bool {
        num_gc_refs.get() > self.activations_table.bump_capacity_remaining()
    }

    fn alloc_externref(&mut self, host_data: ExternRefHostDataId) -> Result<Option<VMExternRef>> {
        let gc_ref =
            match self.alloc_raw(VMGcHeader::externref(), Layout::new::<VMDrcExternRef>())? {
                None => return Ok(None),
                Some(gc_ref) => gc_ref,
            };
        self.index_mut::<VMDrcExternRef>(gc_ref.as_typed_unchecked())
            .host_data = host_data;
        Ok(Some(gc_ref.into_externref_unchecked()))
    }

    fn externref_host_data(&self, externref: &VMExternRef) -> ExternRefHostDataId {
        let typed_ref = externref_to_drc(externref);
        self.index(typed_ref).host_data
    }

    fn header(&self, gc_ref: &VMGcRef) -> &VMGcHeader {
        self.index(gc_ref.as_typed_unchecked())
    }

    fn header_mut(&mut self, gc_ref: &VMGcRef) -> &mut VMGcHeader {
        self.index_mut(gc_ref.as_typed_unchecked())
    }

    fn object_size(&self, gc_ref: &VMGcRef) -> usize {
        let size = self.header(gc_ref).reserved_u27();
        usize::try_from(size).unwrap()
    }

    fn alloc_raw(&mut self, mut header: VMGcHeader, layout: Layout) -> Result<Option<VMGcRef>> {
        debug_assert!(layout.size() >= core::mem::size_of::<VMDrcHeader>());
        debug_assert!(layout.align() >= core::mem::align_of::<VMDrcHeader>());

        let size = u32::try_from(layout.size()).unwrap();
        if !VMGcKind::value_fits_in_unused_bits(size) {
            return Err(crate::Trap::AllocationTooLarge.into());
        }

        let gc_ref = match self.free_list.alloc(layout)? {
            None => return Ok(None),
            Some(index) => VMGcRef::from_heap_index(index).unwrap(),
        };

        debug_assert_eq!(header.reserved_u27(), 0);
        header.set_reserved_u27(size);

        *self.index_mut(drc_ref(&gc_ref)) = VMDrcHeader {
            header,
            ref_count: UnsafeCell::new(1),
        };
        log::trace!("increment {gc_ref:#p} ref count -> 1");
        Ok(Some(gc_ref))
    }

    fn alloc_uninit_struct(
        &mut self,
        ty: VMSharedTypeIndex,
        layout: &GcStructLayout,
    ) -> Result<Option<VMStructRef>> {
        let gc_ref = match self.alloc_raw(
            VMGcHeader::from_kind_and_index(VMGcKind::StructRef, ty),
            layout.layout(),
        )? {
            None => return Ok(None),
            Some(gc_ref) => gc_ref,
        };
        Ok(Some(gc_ref.into_structref_unchecked()))
    }

    fn dealloc_uninit_struct(&mut self, structref: VMStructRef) {
        self.dealloc(structref.into());
    }

    fn gc_object_data(&mut self, gc_ref: &VMGcRef) -> VMGcObjectDataMut<'_> {
        let range = self.object_range(gc_ref);
        let data = &mut self.heap_slice_mut()[range];
        VMGcObjectDataMut::new(data)
    }

    fn gc_object_data_pair(
        &mut self,
        a: &VMGcRef,
        b: &VMGcRef,
    ) -> (VMGcObjectDataMut<'_>, VMGcObjectDataMut<'_>) {
        assert_ne!(a, b);

        let a_range = self.object_range(a);
        let b_range = self.object_range(b);

        // Assert that the two objects do not overlap.
        assert!(a_range.start <= a_range.end);
        assert!(b_range.start <= b_range.end);
        assert!(a_range.end <= b_range.start || b_range.end <= a_range.start);

        let (a_data, b_data) = if a_range.start < b_range.start {
            let (a_half, b_half) = self.heap_slice_mut().split_at_mut(b_range.start);
            let b_len = b_range.end - b_range.start;
            (&mut a_half[a_range], &mut b_half[..b_len])
        } else {
            let (b_half, a_half) = self.heap_slice_mut().split_at_mut(a_range.start);
            let a_len = a_range.end - a_range.start;
            (&mut a_half[..a_len], &mut b_half[b_range])
        };

        (
            VMGcObjectDataMut::new(a_data),
            VMGcObjectDataMut::new(b_data),
        )
    }

    fn alloc_uninit_array(
        &mut self,
        ty: VMSharedTypeIndex,
        length: u32,
        layout: &GcArrayLayout,
    ) -> Result<Option<VMArrayRef>> {
        let gc_ref = match self.alloc_raw(
            VMGcHeader::from_kind_and_index(VMGcKind::ArrayRef, ty),
            layout.layout(length),
        )? {
            None => return Ok(None),
            Some(gc_ref) => gc_ref,
        };
        self.index_mut::<VMDrcArrayHeader>(gc_ref.as_typed_unchecked())
            .length = length;
        Ok(Some(gc_ref.into_arrayref_unchecked()))
    }

    fn dealloc_uninit_array(&mut self, arrayref: VMArrayRef) {
        self.dealloc(arrayref.into())
    }

    fn array_len(&self, arrayref: &VMArrayRef) -> u32 {
        debug_assert!(arrayref.as_gc_ref().is_typed::<VMDrcArrayHeader>(self));
        self.index::<VMDrcArrayHeader>(arrayref.as_gc_ref().as_typed_unchecked())
            .length
    }

    fn gc<'a>(
        &'a mut self,
        roots: GcRootsIter<'a>,
        host_data_table: &'a mut ExternRefHostDataTable,
    ) -> Box<dyn GarbageCollection<'a> + 'a> {
        assert_eq!(self.no_gc_count, 0, "Cannot GC inside a no-GC scope!");
        Box::new(DrcCollection {
            roots,
            host_data_table,
            heap: self,
            phase: DrcCollectionPhase::Trace,
        })
    }

    unsafe fn vmctx_gc_heap_data(&self) -> NonNull<u8> {
        let ptr: NonNull<VMGcRefActivationsTable> = NonNull::from(&*self.activations_table);
        ptr.cast()
    }

    #[cfg(feature = "pooling-allocator")]
    fn reset(&mut self) {
        let DrcHeap {
            no_gc_count,
            activations_table,
            free_list,
            heap: _,
        } = self;

        *no_gc_count = 0;
        free_list.reset();
        activations_table.reset();
    }

    fn heap_slice(&self) -> &[UnsafeCell<u8>] {
        let ptr = self.heap.as_ptr().cast();
        let len = self.heap.len();
        unsafe { core::slice::from_raw_parts(ptr, len) }
    }

    fn heap_slice_mut(&mut self) -> &mut [u8] {
        let ptr = self.heap.as_mut_ptr();
        let len = self.heap.len();
        unsafe { core::slice::from_raw_parts_mut(ptr, len) }
    }
}

struct DrcCollection<'a> {
    roots: GcRootsIter<'a>,
    host_data_table: &'a mut ExternRefHostDataTable,
    heap: &'a mut DrcHeap,
    phase: DrcCollectionPhase,
}

enum DrcCollectionPhase {
    Trace,
    Sweep,
    Done,
}

impl<'a> GarbageCollection<'a> for DrcCollection<'a> {
    fn collect_increment(&mut self) -> GcProgress {
        match self.phase {
            DrcCollectionPhase::Trace => {
                log::trace!("Begin DRC trace");
                self.heap.trace(&mut self.roots);
                log::trace!("End DRC trace");
                self.phase = DrcCollectionPhase::Sweep;
                GcProgress::Continue
            }
            DrcCollectionPhase::Sweep => {
                log::trace!("Begin DRC sweep");
                self.heap.sweep(self.host_data_table);
                log::trace!("End DRC sweep");
                self.phase = DrcCollectionPhase::Done;
                GcProgress::Complete
            }
            DrcCollectionPhase::Done => GcProgress::Complete,
        }
    }
}

/// The type of `VMGcRefActivationsTable`'s bump region's elements.
///
/// These are written to by Wasm.
type TableElem = UnsafeCell<u32>;

/// A table that over-approximizes the set of `VMGcRef`s that any Wasm
/// activation on this thread is currently using.
///
/// Under the covers, this is a simple bump allocator that allows duplicate
/// entries. Deduplication happens at GC time.
//
// `alloc` must be the first member, it's accessed from JIT code.
#[repr(C)]
struct VMGcRefActivationsTable {
    /// Structures used to perform fast bump allocation of storage of externref
    /// values.
    ///
    /// This is the only member of this structure accessed from JIT code.
    alloc: VMGcRefTableAlloc,

    /// When unioned with `chunk`, this is an over-approximation of the GC roots
    /// on the stack, inside Wasm frames.
    ///
    /// This is used by slow-path insertion, and when a GC cycle finishes, is
    /// re-initialized to the just-discovered precise set of stack roots (which
    /// immediately becomes an over-approximation again as soon as Wasm runs and
    /// potentially drops references).
    over_approximated_stack_roots: HashSet<VMGcRef>,

    /// The precise set of on-stack, inside-Wasm GC roots that we discover via
    /// walking the stack and interpreting stack maps.
    ///
    /// This is *only* used inside the `gc` function, and is empty otherwise. It
    /// is just part of this struct so that we can reuse the allocation, rather
    /// than create a new hash set every GC.
    precise_stack_roots: HashSet<VMGcRef>,
}

/// The chunk of memory that we bump-allocate into for the fast path of
/// inserting into the `VMGcRefActivationsTable`.
///
/// This is accessed from compiled Wasm code.
#[repr(C)]
struct VMGcRefTableAlloc {
    /// Bump-allocation finger within the `chunk`.
    ///
    /// NB: this is an `UnsafeCell` because it is written to by compiled Wasm
    /// code.
    next: UnsafeCell<NonNull<TableElem>>,

    /// Pointer to just after the `chunk`.
    ///
    /// This is *not* within the current chunk and therefore is not a valid
    /// place to insert a reference!
    end: NonNull<TableElem>,

    /// Bump allocation chunk that stores fast-path insertions.
    ///
    /// This is not accessed from JIT code.
    chunk: Box<[TableElem]>,
}

impl Default for VMGcRefTableAlloc {
    fn default() -> Self {
        // Start with an empty chunk, just in case this activations table isn't
        // ever used. This means that there's no space in the bump-allocation
        // area which will force any path trying to use this to the slow GC
        // path. The first time this happens, though, the slow GC path will
        // allocate a new chunk for actual fast-bumping.
        let mut chunk: Box<[TableElem]> = Box::new([]);
        let next = chunk.as_mut_ptr();
        let end = unsafe { next.add(chunk.len()) };
        VMGcRefTableAlloc {
            next: UnsafeCell::new(NonNull::new(next).unwrap()),
            end: NonNull::new(end).unwrap(),
            chunk,
        }
    }
}

impl VMGcRefTableAlloc {
    /// Create a new, empty bump region.
    const CHUNK_SIZE: usize = 4096 / mem::size_of::<TableElem>();

    /// Force the lazy allocation of this bump region.
    fn force_allocation(&mut self) {
        assert!(self.chunk.is_empty());
        self.chunk = (0..Self::CHUNK_SIZE).map(|_| UnsafeCell::new(0)).collect();
        self.reset();
    }

    /// Reset this bump region, retaining any underlying allocation, but moving
    /// the bump pointer and limit to their default positions.
    fn reset(&mut self) {
        self.next = UnsafeCell::new(NonNull::new(self.chunk.as_mut_ptr()).unwrap());
        self.end = NonNull::new(unsafe { self.chunk.as_mut_ptr().add(self.chunk.len()) }).unwrap();
    }
}

// This gets around the usage of `UnsafeCell` throughout the internals of this
// allocator, but the storage should all be Send/Sync and synchronization isn't
// necessary since operations require `&mut self`.
unsafe impl Send for VMGcRefTableAlloc {}
unsafe impl Sync for VMGcRefTableAlloc {}

fn _assert_send_sync() {
    fn _assert<T: Send + Sync>() {}
    _assert::<VMGcRefActivationsTable>();
}

impl Default for VMGcRefActivationsTable {
    fn default() -> Self {
        Self::new()
    }
}

impl VMGcRefActivationsTable {
    /// Create a new `VMGcRefActivationsTable`.
    fn new() -> Self {
        VMGcRefActivationsTable {
            alloc: VMGcRefTableAlloc::default(),
            over_approximated_stack_roots: HashSet::new(),
            precise_stack_roots: HashSet::new(),
        }
    }

    #[cfg(feature = "pooling-allocator")]
    fn reset(&mut self) {
        let VMGcRefActivationsTable {
            alloc,
            over_approximated_stack_roots,
            precise_stack_roots,
        } = self;

        alloc.reset();
        over_approximated_stack_roots.clear();
        precise_stack_roots.clear();
    }

    /// Get the available capacity in the bump allocation chunk.
    #[inline]
    fn bump_capacity_remaining(&self) -> usize {
        let end = self.alloc.end.as_ptr() as usize;
        let next = unsafe { *self.alloc.next.get() };
        end - next.as_ptr() as usize
    }

    /// Try and insert a `VMGcRef` into this table.
    ///
    /// This is a fast path that only succeeds when the bump chunk has the
    /// capacity for the requested insertion.
    ///
    /// If the insertion fails, then the `VMGcRef` is given back. Callers
    /// may attempt a GC to free up space and try again, or may call
    /// `insert_slow_path` to infallibly insert the reference (potentially
    /// allocating additional space in the table to hold it).
    #[inline]
    fn try_insert(&mut self, gc_ref: VMGcRef) -> Result<(), VMGcRef> {
        unsafe {
            let next = *self.alloc.next.get();
            if next == self.alloc.end {
                return Err(gc_ref);
            }

            debug_assert_eq!(
                (*next.as_ref().get()),
                0,
                "slots >= the `next` bump finger are always `None`"
            );
            ptr::write(next.as_ptr(), UnsafeCell::new(gc_ref.as_raw_u32()));

            let next = NonNull::new_unchecked(next.as_ptr().add(1));
            debug_assert!(next <= self.alloc.end);
            *self.alloc.next.get() = next;

            Ok(())
        }
    }

    /// Insert a reference into the table, without ever performing GC.
    #[inline]
    fn insert_without_gc(&mut self, gc_ref: VMGcRef) {
        if let Err(gc_ref) = self.try_insert(gc_ref) {
            self.insert_slow_without_gc(gc_ref);
        }
    }

    #[inline(never)]
    fn insert_slow_without_gc(&mut self, gc_ref: VMGcRef) {
        self.over_approximated_stack_roots.insert(gc_ref);
    }

    fn num_filled_in_bump_chunk(&self) -> usize {
        let next = unsafe { *self.alloc.next.get() };
        let bytes_unused = (self.alloc.end.as_ptr() as usize) - (next.as_ptr() as usize);
        let slots_unused = bytes_unused / mem::size_of::<TableElem>();
        self.alloc.chunk.len().saturating_sub(slots_unused)
    }

    fn elements(&self, mut f: impl FnMut(&VMGcRef)) {
        for elem in self.over_approximated_stack_roots.iter() {
            f(elem);
        }

        // The bump chunk is not all the way full, so we only iterate over its
        // filled-in slots.
        let num_filled = self.num_filled_in_bump_chunk();
        for slot in self.alloc.chunk.iter().take(num_filled) {
            if let Some(elem) = VMGcRef::from_raw_u32(unsafe { *slot.get() }) {
                f(&elem);
            }
        }
    }
}

#[derive(Debug, Default)]
struct DebugOnly<T> {
    inner: T,
}

impl<T> Deref for DebugOnly<T> {
    type Target = T;

    fn deref(&self) -> &T {
        if cfg!(debug_assertions) {
            &self.inner
        } else {
            panic!(
                "only deref `DebugOnly` when `cfg(debug_assertions)` or \
                 inside a `debug_assert!(..)`"
            )
        }
    }
}

impl<T> DerefMut for DebugOnly<T> {
    fn deref_mut(&mut self) -> &mut T {
        if cfg!(debug_assertions) {
            &mut self.inner
        } else {
            panic!(
                "only deref `DebugOnly` when `cfg(debug_assertions)` or \
                 inside a `debug_assert!(..)`"
            )
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use wasmtime_environ::HostPtr;

    #[test]
    fn vm_drc_header_size_align() {
        assert_eq!(
            (wasmtime_environ::drc::HEADER_SIZE as usize),
            core::mem::size_of::<VMDrcHeader>()
        );
        assert_eq!(
            (wasmtime_environ::drc::HEADER_ALIGN as usize),
            core::mem::align_of::<VMDrcHeader>()
        );
    }

    #[test]
    fn vm_drc_array_header_length_offset() {
        assert_eq!(
            wasmtime_environ::drc::ARRAY_LENGTH_OFFSET,
            u32::try_from(core::mem::offset_of!(VMDrcArrayHeader, length)).unwrap(),
        );
    }

    #[test]
    fn ref_count_is_at_correct_offset() {
        let extern_data = VMDrcHeader {
            header: VMGcHeader::externref(),
            ref_count: UnsafeCell::new(0),
        };

        let extern_data_ptr = &extern_data as *const _;
        let ref_count_ptr = &extern_data.ref_count as *const _;

        let actual_offset = (ref_count_ptr as usize) - (extern_data_ptr as usize);

        let offsets = wasmtime_environ::VMOffsets::from(wasmtime_environ::VMOffsetsFields {
            ptr: HostPtr,
            num_imported_functions: 0,
            num_imported_tables: 0,
            num_imported_memories: 0,
            num_imported_globals: 0,
            num_imported_tags: 0,
            num_defined_tables: 0,
            num_defined_memories: 0,
            num_owned_memories: 0,
            num_defined_globals: 0,
            num_defined_tags: 0,
            num_escaped_funcs: 0,
        });

        assert_eq!(
            offsets.vm_drc_header_ref_count(),
            u32::try_from(actual_offset).unwrap(),
        );
    }

    #[test]
    fn table_next_is_at_correct_offset() {
        let table = VMGcRefActivationsTable::new();

        let table_ptr = &table as *const _;
        let next_ptr = &table.alloc.next as *const _;

        let actual_offset = (next_ptr as usize) - (table_ptr as usize);

        let offsets = wasmtime_environ::VMOffsets::from(wasmtime_environ::VMOffsetsFields {
            ptr: HostPtr,
            num_imported_functions: 0,
            num_imported_tables: 0,
            num_imported_memories: 0,
            num_imported_globals: 0,
            num_imported_tags: 0,
            num_defined_tables: 0,
            num_defined_memories: 0,
            num_owned_memories: 0,
            num_defined_globals: 0,
            num_defined_tags: 0,
            num_escaped_funcs: 0,
        });
        assert_eq!(
            offsets.vm_gc_ref_activation_table_next() as usize,
            actual_offset
        );
    }

    #[test]
    fn table_end_is_at_correct_offset() {
        let table = VMGcRefActivationsTable::new();

        let table_ptr = &table as *const _;
        let end_ptr = &table.alloc.end as *const _;

        let actual_offset = (end_ptr as usize) - (table_ptr as usize);

        let offsets = wasmtime_environ::VMOffsets::from(wasmtime_environ::VMOffsetsFields {
            ptr: HostPtr,
            num_imported_functions: 0,
            num_imported_tables: 0,
            num_imported_memories: 0,
            num_imported_globals: 0,
            num_imported_tags: 0,
            num_defined_tables: 0,
            num_defined_memories: 0,
            num_owned_memories: 0,
            num_defined_globals: 0,
            num_defined_tags: 0,
            num_escaped_funcs: 0,
        });
        assert_eq!(
            offsets.vm_gc_ref_activation_table_end() as usize,
            actual_offset
        );
    }
}