1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
//! Garbage collection rooting APIs.
//!
//! Rooting prevents GC objects from being collected while they are actively
//! being used.
//!
//! ## Goals
//!
//! We have a few sometimes-conflicting goals with our GC rooting APIs:
//!
//! 1. Safety: It should never be possible to get a use-after-free bug because
//! the user misused the rooting APIs, the collector "mistakenly" determined
//! an object was unreachable and collected it, and then the user tried to
//! access the object. This is our highest priority.
//!
//! 2. Moving GC: Our rooting APIs should moving collectors (such as
//! generational and compacting collectors) where an object might get
//! relocated after a collection and we need to update the GC root's pointer
//! to the moved object. This means we either need cooperation and internal
//! mutability from individual GC roots as well as the ability to enumerate
//! all GC roots on the native Rust stack, or we need a level of indirection.
//!
//! 3. Performance: Our rooting APIs should generally be as low-overhead as
//! possible. They definitely shouldn't require synchronization and locking
//! to create, access, and drop GC roots.
//!
//! 4. Ergonomics: Our rooting APIs should be, if not a pleasure, then at least
//! not a burden for users. Additionally, the API's types should be `Sync`
//! and `Send` so that they work well with async Rust.
//!
//! For example, goals (3) and (4) are in conflict when we think about how to
//! support (2). Ideally, for ergonomics, a root would automatically unroot
//! itself when dropped. But in the general case that requires holding a
//! reference to the store's root set, and that root set needs to be held
//! simultaneously by all GC roots, and they each need to mutate the set to
//! unroot themselves. That implies `Rc<RefCell<...>>` or `Arc<Mutex<...>>`! The
//! former makes the store and GC root types not `Send` and not `Sync`. The
//! latter imposes synchronization and locking overhead. So we instead make GC
//! roots indirect and require passing in a store context explicitly to unroot
//! in the general case. This trades worse ergonomics for better performance and
//! support for moving GC.
//!
//! ## Two Flavors of Rooting API
//!
//! Okay, with that out of the way, this module provides two flavors of rooting
//! API. One for the common, scoped lifetime case, and another for the rare case
//! where we really need a GC root with an arbitrary, non-LIFO/non-scoped
//! lifetime:
//!
//! 1. `RootScope` and `Rooted<T>`: These are used for temporarily rooting GC
//! objects for the duration of a scope. The internal implementation takes
//! advantage of the LIFO property inherent in scopes, making creating and
//! dropping `Rooted<T>`s and `RootScope`s super fast and roughly equivalent
//! to bump allocation.
//!
//! This type is vaguely similar to V8's [`HandleScope`].
//!
//! [`HandleScope`]: https://v8.github.io/api/head/classv8_1_1HandleScope.html
//!
//! Note that `Rooted<T>` can't be statically tied to its context scope via a
//! lifetime parameter, unfortunately, as that would allow the creation of
//! only one `Rooted<T>` at a time, since the `Rooted<T>` would take a borrow
//! of the whole context.
//!
//! This supports the common use case for rooting and provides good
//! ergonomics.
//!
//! 2. `ManuallyRooted<T>`: This is the fully general rooting API used for
//! holding onto non-LIFO GC roots with arbitrary lifetimes. However, users
//! must manually unroot them. Failure to manually unroot a
//! `ManuallyRooted<T>` before it is dropped will result in the GC object
//! (and everything it transitively references) leaking for the duration of
//! the `Store`'s lifetime.
//!
//! This type is roughly similar to SpiderMonkey's [`PersistentRooted<T>`],
//! although they avoid the manual-unrooting with internal mutation and
//! shared references. (Our constraints mean we can't do those things, as
//! mentioned explained above.)
//!
//! [`PersistentRooted<T>`]: http://devdoc.net/web/developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/JSAPI_reference/JS::PersistentRooted.html
//!
//! At the end of the day, both `Rooted<T>` and `ManuallyRooted<T>` are just
//! tagged indices into the store's `RootSet`. This indirection allows working
//! with Rust's borrowing discipline (we use `&mut Store` to represent mutable
//! access to the GC heap) while still allowing rooted references to be moved
//! around without tying up the whole store in borrows. Additionally, and
//! crucially, this indirection allows us to update the *actual* GC pointers in
//! the `RootSet` and support moving GCs (again, as mentioned above).
//!
//! ## Unrooted References
//!
//! We generally don't expose *unrooted* GC references in the Wasmtime API at
//! this time -- and I expect it will be a very long time before we do, but in
//! the limit we may want to let users define their own GC-managed types that
//! participate in GC tracing and all that -- so we don't have to worry about
//! failure to root an object causing use-after-free bugs or failing to update a
//! GC root pointer after a moving GC as long as users stick to our safe rooting
//! APIs. (The one exception is `ValRaw`, which does hold raw GC references. But
//! with `ValRaw` all bets are off and safety is 100% up to the user.)
//!
//! We do, however, have to worry about these things internally. So first of
//! all, try to avoid ever working with unrooted GC references if you
//! can. However, if you really must, consider also using an `AutoAssertNoGc`
//! across the block of code that is manipulating raw GC references.
use crate::runtime::vm::{GcRootsList, GcStore, VMGcRef};
use crate::{prelude::*, ValRaw};
use crate::{
store::{AutoAssertNoGc, StoreId, StoreOpaque},
AsContext, AsContextMut, GcRef, Result, RootedGcRef,
};
use core::any;
use core::marker;
use core::mem::{self, MaybeUninit};
use core::num::NonZeroU64;
use core::{
fmt::{self, Debug},
hash::{Hash, Hasher},
ops::{Deref, DerefMut},
};
use wasmtime_slab::{Id as SlabId, Slab};
mod sealed {
use super::*;
/// Sealed, `wasmtime`-internal trait for GC references.
///
/// # Safety
///
/// All types implementing this trait must:
///
/// * Be a newtype of a `GcRootIndex`
///
/// * Not implement `Copy` or `Clone`
///
/// * Only have `&self` methods.
pub unsafe trait GcRefImpl: Sized {
/// Transmute a `&GcRootIndex` into an `&Self`.
fn transmute_ref(index: &GcRootIndex) -> &Self;
}
/// Sealed, `wasmtime`-internal trait for the common methods on rooted GC
/// references.
pub trait RootedGcRefImpl<T: GcRef> {
/// Get this rooted GC reference's raw `VMGcRef` out of the store's GC
/// root set.
///
/// Returns `None` for objects that have since been unrooted (eg because
/// its associated `RootedScope` was dropped).
///
/// Panics if this root is not associated with the given store.
fn get_gc_ref<'a>(&self, store: &'a StoreOpaque) -> Option<&'a VMGcRef>;
/// Same as `get_gc_ref` but returns an error instead of `None` for
/// objects that have been unrooted.
fn try_gc_ref<'a>(&self, store: &'a StoreOpaque) -> Result<&'a VMGcRef> {
self.get_gc_ref(store).ok_or_else(|| {
anyhow!("attempted to use a garbage-collected object that has been unrooted")
})
}
/// Get a clone of this rooted GC reference's raw `VMGcRef` out of the
/// store's GC root set.
///
/// Returns `None` for objects that have since been unrooted (eg because
/// its associated `RootedScope` was dropped).
///
/// Panics if this root is not associated with the given store.
fn clone_gc_ref(&self, store: &mut AutoAssertNoGc<'_>) -> Option<VMGcRef> {
let gc_ref = self.get_gc_ref(store)?.unchecked_copy();
Some(store.unwrap_gc_store_mut().clone_gc_ref(&gc_ref))
}
/// Same as `clone_gc_ref` but returns an error instead of `None` for
/// objects that have been unrooted.
fn try_clone_gc_ref(&self, store: &mut AutoAssertNoGc<'_>) -> Result<VMGcRef> {
let gc_ref = self.try_gc_ref(store)?.unchecked_copy();
Ok(store.gc_store_mut()?.clone_gc_ref(&gc_ref))
}
}
}
pub(crate) use sealed::*;
/// The index of a GC root inside a particular store's GC root set.
///
/// Can be either a LIFO- or manually-rooted object, depending on the
/// `PackedIndex`.
///
/// Every `T` such that `T: GcRef` must be a newtype over this `GcRootIndex`.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
// Just `pub` to avoid `warn(private_interfaces)` in public APIs, which we can't
// `allow(...)` on our MSRV yet.
#[doc(hidden)]
#[repr(C)] // NB: if this layout changes be sure to change the C API as well
pub struct GcRootIndex {
store_id: StoreId,
generation: u32,
index: PackedIndex,
}
const _: () = {
// NB: these match the C API which should also be updated if this changes
assert!(mem::size_of::<GcRootIndex>() == 16);
assert!(mem::align_of::<GcRootIndex>() == mem::align_of::<u64>());
};
impl GcRootIndex {
#[inline]
pub(crate) fn comes_from_same_store(&self, store: &StoreOpaque) -> bool {
self.store_id == store.id()
}
/// Same as `RootedGcRefImpl::get_gc_ref` but not associated with any
/// particular `T: GcRef`.
///
/// We must avoid triggering a GC while holding onto the resulting raw
/// `VMGcRef` to avoid use-after-free bugs and similar. The `'a` lifetime
/// threaded from the `store` to the result will normally prevent GCs
/// statically, at compile time, since performing a GC requires a mutable
/// borrow of the store. However, if you call `VMGcRef::unchecked_copy` on
/// the resulting GC reference, then all bets are off and this invariant is
/// up to you to manually uphold. Failure to uphold this invariant is memory
/// safe but will lead to general incorrectness such as panics and wrong
/// results.
///
/// # Panics
///
/// Panics if `self` is not associated with the given store.
pub(crate) fn get_gc_ref<'a>(&self, store: &'a StoreOpaque) -> Option<&'a VMGcRef> {
assert!(
self.comes_from_same_store(store),
"object used with wrong store"
);
if let Some(index) = self.index.as_lifo() {
let entry = store.gc_roots().lifo_roots.get(index)?;
if entry.generation == self.generation {
Some(&entry.gc_ref)
} else {
None
}
} else if let Some(id) = self.index.as_manual() {
let gc_ref = store.gc_roots().manually_rooted.get(id);
debug_assert!(gc_ref.is_some());
gc_ref
} else {
unreachable!()
}
}
/// Same as `get_gc_ref` but returns an error instead of `None` if
/// the GC reference has been unrooted.
///
/// # Panics
///
/// Panics if `self` is not associated with the given store.
pub(crate) fn try_gc_ref<'a>(&self, store: &'a StoreOpaque) -> Result<&'a VMGcRef> {
self.get_gc_ref(store).ok_or_else(|| {
anyhow!("attempted to use a garbage-collected object that has been unrooted")
})
}
/// Same as `RootedGcRefImpl::clone_gc_ref` but not associated with any
/// particular `T: GcRef`.
pub(crate) fn try_clone_gc_ref(&self, store: &mut AutoAssertNoGc<'_>) -> Result<VMGcRef> {
let gc_ref = self.try_gc_ref(store)?.unchecked_copy();
Ok(store.gc_store_mut()?.clone_gc_ref(&gc_ref))
}
}
/// This is a bit-packed version of
///
/// ```ignore
/// enema {
/// Lifo(usize),
/// Manual(SlabId),
/// }
/// ```
///
/// where the high bit is the discriminant and the lower 31 bits are the
/// payload.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
#[repr(transparent)]
struct PackedIndex(u32);
impl Debug for PackedIndex {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(index) = self.as_lifo() {
f.debug_tuple("PackedIndex::Lifo").field(&index).finish()
} else if let Some(id) = self.as_manual() {
f.debug_tuple("PackedIndex::Manual").field(&id).finish()
} else {
unreachable!()
}
}
}
impl PackedIndex {
const DISCRIMINANT_MASK: u32 = 0b1 << 31;
const LIFO_DISCRIMINANT: u32 = 0b0 << 31;
const MANUAL_DISCRIMINANT: u32 = 0b1 << 31;
const PAYLOAD_MASK: u32 = !Self::DISCRIMINANT_MASK;
fn new_lifo(index: usize) -> PackedIndex {
let index32 = u32::try_from(index).unwrap();
assert_eq!(index32 & Self::DISCRIMINANT_MASK, 0);
let packed = PackedIndex(Self::LIFO_DISCRIMINANT | index32);
debug_assert!(packed.is_lifo());
debug_assert_eq!(packed.as_lifo(), Some(index));
debug_assert!(!packed.is_manual());
debug_assert!(packed.as_manual().is_none());
packed
}
fn new_manual(id: SlabId) -> PackedIndex {
let raw = id.into_raw();
assert_eq!(raw & Self::DISCRIMINANT_MASK, 0);
let packed = PackedIndex(Self::MANUAL_DISCRIMINANT | raw);
debug_assert!(packed.is_manual());
debug_assert_eq!(packed.as_manual(), Some(id));
debug_assert!(!packed.is_lifo());
debug_assert!(packed.as_lifo().is_none());
packed
}
fn discriminant(&self) -> u32 {
self.0 & Self::DISCRIMINANT_MASK
}
fn is_lifo(&self) -> bool {
self.discriminant() == Self::LIFO_DISCRIMINANT
}
fn is_manual(&self) -> bool {
self.discriminant() == Self::MANUAL_DISCRIMINANT
}
fn payload(&self) -> u32 {
self.0 & Self::PAYLOAD_MASK
}
fn as_lifo(&self) -> Option<usize> {
if self.is_lifo() {
Some(usize::try_from(self.payload()).unwrap())
} else {
None
}
}
fn as_manual(&self) -> Option<SlabId> {
if self.is_manual() {
Some(SlabId::from_raw(self.payload()))
} else {
None
}
}
}
/// The set of all embedder-API GC roots in a single store/heap.
#[derive(Debug, Default)]
pub(crate) struct RootSet {
/// GC roots with arbitrary lifetime that are manually rooted and unrooted,
/// for use with `ManuallyRooted<T>`.
manually_rooted: Slab<VMGcRef>,
/// Strictly LIFO-ordered GC roots, for use with `RootScope` and
/// `Rooted<T>`.
lifo_roots: Vec<LifoRoot>,
/// Generation counter for entries to prevent ABA bugs with `RootScope` and
/// `Rooted<T>`.
lifo_generation: u32,
}
#[derive(Debug)]
struct LifoRoot {
generation: u32,
gc_ref: VMGcRef,
}
impl RootSet {
pub(crate) fn trace_roots(&mut self, gc_roots_list: &mut GcRootsList) {
log::trace!("Begin trace user LIFO roots");
for root in &mut self.lifo_roots {
unsafe {
gc_roots_list.add_root((&mut root.gc_ref).into(), "user LIFO root");
}
}
log::trace!("End trace user LIFO roots");
log::trace!("Begin trace user manual roots");
for (_id, root) in self.manually_rooted.iter_mut() {
unsafe {
gc_roots_list.add_root(root.into(), "user manual root");
}
}
log::trace!("End trace user manual roots");
}
/// Enter a LIFO rooting scope.
///
/// Returns an integer that should be passed unmodified to `exit_lifo_scope`
/// when the scope is finished.
///
/// Calls to `{enter,exit}_lifo_scope` must happen in a strict LIFO order.
#[inline]
pub(crate) fn enter_lifo_scope(&self) -> usize {
self.lifo_roots.len()
}
/// Exit a LIFO rooting scope.
///
/// The `scope` argument must be the result of the corresponding
/// `enter_lifo_scope` call.
///
/// Calls to `{enter,exit}_lifo_scope` must happen in a strict LIFO order.
#[inline]
pub(crate) fn exit_lifo_scope(&mut self, gc_store: Option<&mut GcStore>, scope: usize) {
debug_assert!(self.lifo_roots.len() >= scope);
// If we actually have roots to unroot, call an out-of-line slow path.
if self.lifo_roots.len() > scope {
self.exit_lifo_scope_slow(gc_store, scope);
}
}
#[inline(never)]
#[cold]
fn exit_lifo_scope_slow(&mut self, mut gc_store: Option<&mut GcStore>, scope: usize) {
self.lifo_generation += 1;
// TODO: In the case where we have a tracing GC that doesn't need to
// drop barriers, this should really be:
//
// self.lifo_roots.truncate(scope);
let mut lifo_roots = mem::take(&mut self.lifo_roots);
for root in lifo_roots.drain(scope..) {
// Only drop the GC reference if we actually have a GC store. How
// can we have a GC reference but not a GC store? If we've only
// create `i31refs`, we never force a GC store's allocation. This is
// fine because `i31ref`s never need drop barriers.
if let Some(gc_store) = &mut gc_store {
gc_store.drop_gc_ref(root.gc_ref);
}
}
self.lifo_roots = lifo_roots;
}
pub(crate) fn with_lifo_scope<S, T>(store: &mut S, f: impl FnOnce(&mut S) -> T) -> T
where
S: DerefMut<Target = StoreOpaque>,
{
let scope = store.gc_roots().enter_lifo_scope();
let ret = f(store);
store.exit_gc_lifo_scope(scope);
ret
}
pub(crate) fn push_lifo_root(&mut self, store_id: StoreId, gc_ref: VMGcRef) -> GcRootIndex {
let generation = self.lifo_generation;
let index = self.lifo_roots.len();
let index = PackedIndex::new_lifo(index);
self.lifo_roots.push(LifoRoot { generation, gc_ref });
GcRootIndex {
store_id,
generation,
index,
}
}
}
/// A scoped, rooted reference to a garbage-collected `T`.
///
/// A `Rooted<T>` is a strong handle to a garbage-collected `T`, preventing its
/// referent (and anything else transitively referenced) from being collected by
/// the GC during the scope within which this `Rooted<T>` was created.
///
/// When the context exits this `Rooted<T>`'s scope, the underlying GC object is
/// automatically unrooted and any further attempts to use access the underlying
/// object will return errors or otherwise fail.
///
/// `Rooted<T>` dereferences to its underlying `T`, allowing you to call `T`'s
/// methods.
///
/// # Example
///
/// ```
/// # use wasmtime::*;
/// # fn _foo() -> Result<()> {
/// let mut store = Store::<()>::default();
///
/// // Allocating a GC object returns a `Rooted<T>`.
/// let hello: Rooted<ExternRef> = ExternRef::new(&mut store, "hello")?;
///
/// // Because `Rooted<T>` derefs to `T`, we can call `T` methods on a
/// // `Rooted<T>`. For example, we can call the `ExternRef::data` method when we
/// // have a `Rooted<ExternRef>`.
/// let data = hello
/// .data(&store)?
/// .downcast_ref::<&str>()
/// .ok_or_else(|| Error::msg("not a str"))?;
/// assert_eq!(*data, "hello");
///
/// // A `Rooted<T>` roots its underlying GC object for the duration of the
/// // scope of the store/caller/context that was passed to the method that created
/// // it. If we only want to keep a GC reference rooted and alive temporarily, we
/// // can introduce new scopes with `RootScope`.
/// {
/// let mut scope = RootScope::new(&mut store);
///
/// // This `Rooted<T>` is automatically unrooted after `scope` is dropped,
/// // allowing the collector to reclaim its GC object in the next GC.
/// let scoped_ref = ExternRef::new(&mut scope, "goodbye");
/// }
///
/// let module = Module::new(store.engine(), r#"
/// (module
/// (global (export "global") (mut externref) (ref.null extern))
/// (table (export "table") 10 externref)
/// (func (export "func") (param externref) (result externref)
/// local.get 0
/// )
/// )
/// "#)?;
/// let instance = Instance::new(&mut store, &module, &[])?;
///
/// // GC references returned from calls into Wasm also return (optional, if the
/// // Wasm type is nullable) `Rooted<T>`s.
/// let result: Option<Rooted<_>> = instance
/// .get_typed_func::<Option<Rooted<ExternRef>>, Option<Rooted<ExternRef>>>(&mut store, "func")?
/// .call(&mut store, Some(hello))?;
///
/// // Similarly, getting a GC reference from a Wasm instance's exported global
/// // or table yields a `Rooted<T>`.
///
/// let global = instance
/// .get_global(&mut store, "global")
/// .ok_or_else(|| Error::msg("missing `global` export"))?;
/// let global_val = global.get(&mut store);
/// let global_ref: Option<&Rooted<_>> = global_val
/// .externref()
/// .ok_or_else(|| Error::msg("not an externref"))?;
///
/// let table = instance.get_table(&mut store, "table").unwrap();
/// let table_elem = table
/// .get(&mut store, 3)
/// .ok_or_else(|| Error::msg("table out of bounds"))?;
/// let table_elem_ref: Option<&Rooted<_>> = table_elem
/// .as_extern()
/// .ok_or_else(|| Error::msg("not an externref"))?;
/// # Ok(())
/// # }
/// ```
///
/// # Differences Between `Rooted<T>` and `ManuallyRooted<T>`
///
/// While `Rooted<T>` is automatically unrooted when its scope is exited, this
/// means that `Rooted<T>` is only valid for strictly last-in-first-out (LIFO,
/// aka stack order) lifetimes. This is in contrast to
/// [`ManuallyRooted<T>`][crate::ManuallyRooted], which supports rooting GC
/// objects for arbitrary lifetimes, but requires manual unrooting.
///
/// | Type | Supported Lifetimes | Unrooting |
/// |----------------------------------------------|-----------------------------|-----------|
/// | [`Rooted<T>`][crate::Rooted] | Strictly LIFO / stack order | Automatic |
/// | [`ManuallyRooted<T>`][crate::ManuallyRooted] | Arbitrary | Manual |
///
/// `Rooted<T>` should suffice for most use cases, and provides better
/// ergonomics, but `ManuallyRooted<T>` exists as a fully-general escape hatch.
///
/// # Scopes
///
/// Wasmtime automatically creates two kinds of scopes:
///
/// 1. A [`Store`][crate::Store] is the outermost rooting scope. Creating a
/// `Root<T>` directly inside a `Store` permanently roots the underlying
/// object, similar to dropping a
/// [`ManuallyRooted<T>`][crate::ManuallyRooted] without unrooting it.
///
/// 2. A [`Caller`][crate::Caller] provides a rooting scope for the duration of
/// a call from Wasm into a host function. Any objects rooted in a `Caller`
/// will be unrooted after the host function returns. Note that there can be
/// nested `Caller` scopes in the case where Wasm calls a host function,
/// creating the first `Caller` and its rooting scope , and then the host
/// function calls a Wasm function which then calls another host function,
/// creating a second `Caller` and a second rooting scope. This nesting can
/// be arbitrarily deep.
///
/// Additionally, if you would like to define finer-grained rooting scopes,
/// Wasmtime provides the [`RootScope`][crate::RootScope] type.
///
/// Scopes are always nested in a last-in-first-out (LIFO) order. An outer scope
/// is never exited (and the `Rooted<T>`s defined within it are never
/// automatically unrooted) while an inner scope is still active. All inner
/// scopes are exited before their outer scopes.
///
/// The following diagram illustrates various rooting scopes over time, how they
/// nest, and when their `Rooted<T>`s are automatically unrooted:
///
/// ```text
/// ----- new Store
/// |
/// |
/// | let a: Rooted<T> = ...;
/// |
/// |
/// | ----- call into Wasm
/// | |
/// | |
/// | | ----- Wasm calls host function F
/// | | |
/// | | |
/// | | | let b: Rooted<T> = ...;
/// | | |
/// | | |
/// | | | ----- F calls into Wasm
/// | | | |
/// | | | |
/// | | | | ----- Wasm call host function G
/// | | | | |
/// | | | | |
/// | | | | | let c: Rooted<T> = ...;
/// | | | | |
/// | | | | |
/// | | | | ----- return to Wasm from host function G (unroots `c`)
/// | | | |
/// | | | |
/// | | | ----- Wasm returns to F
/// | | |
/// | | |
/// | | ----- return from host function F (unroots `b`)
/// | |
/// | |
/// | ----- return from Wasm
/// |
/// |
/// | ----- let scope1 = RootScope::new(...);
/// | |
/// | |
/// | | let d: Rooted<T> = ...;
/// | |
/// | |
/// | | ----- let scope2 = RootScope::new(...);
/// | | |
/// | | |
/// | | | let e: Rooted<T> = ...;
/// | | |
/// | | |
/// | | ----- drop `scope2` (unroots `e`)
/// | |
/// | |
/// | ----- drop `scope1` (unroots `d`)
/// |
/// |
/// ----- drop Store (unroots `a`)
/// ```
///
/// A `Rooted<T>` can be used successfully as long as it is still rooted so, in
/// the above diagram, `d` is valid inside `scope2` because `scope2` is wholly
/// contained within the scope `d` was rooted within (`scope1`).
///
/// See also the documentation for [`RootScope`][crate::RootScope].
#[repr(transparent)]
pub struct Rooted<T: GcRef> {
inner: GcRootIndex,
_phantom: marker::PhantomData<T>,
}
impl<T: GcRef> Clone for Rooted<T> {
fn clone(&self) -> Self {
Rooted {
inner: self.inner,
_phantom: marker::PhantomData,
}
}
}
impl<T: GcRef> Copy for Rooted<T> {}
impl<T: GcRef> Debug for Rooted<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let name = format!("Rooted<{}>", any::type_name::<T>());
f.debug_struct(&name).field("inner", &self.inner).finish()
}
}
impl<T: GcRef> RootedGcRefImpl<T> for Rooted<T> {
fn get_gc_ref<'a>(&self, store: &'a StoreOpaque) -> Option<&'a VMGcRef> {
assert!(
self.comes_from_same_store(store),
"object used with wrong store"
);
let index = self.inner.index.as_lifo().unwrap();
let entry = store.gc_roots().lifo_roots.get(index)?;
if entry.generation == self.inner.generation {
Some(&entry.gc_ref)
} else {
None
}
}
}
impl<T: GcRef> Deref for Rooted<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
T::transmute_ref(&self.inner)
}
}
impl<T: GcRef> Rooted<T> {
/// Push the given `VMGcRef` onto our LIFO root set.
///
/// `gc_ref` should belong to `store`'s heap; failure to uphold this is
/// memory safe but will result in general failures down the line such as
/// panics or incorrect results.
///
/// `gc_ref` should be a GC reference pointing to an instance of the GC type
/// that `T` represents. Failure to uphold this invariant is memory safe but
/// will result in general incorrectness such as panics and wrong results.
pub(crate) fn new(store: &mut AutoAssertNoGc<'_>, gc_ref: VMGcRef) -> Rooted<T> {
let id = store.id();
let roots = store.gc_roots_mut();
let inner = roots.push_lifo_root(id, gc_ref);
Rooted {
inner,
_phantom: marker::PhantomData,
}
}
/// Create a new `Rooted<T>` from a `GcRootIndex`.
///
/// Note that `Rooted::from_gc_root_index(my_rooted.index)` is not
/// necessarily an identity function, as it allows changing the `T` type
/// parameter.
///
/// The given index should be a LIFO index of a GC reference pointing to an
/// instance of the GC type that `T` represents. Failure to uphold this
/// invariant is memory safe but will result in general incorrectness such
/// as panics and wrong results.
pub(crate) fn from_gc_root_index(inner: GcRootIndex) -> Rooted<T> {
debug_assert!(inner.index.is_lifo());
Rooted {
inner,
_phantom: marker::PhantomData,
}
}
#[inline]
pub(crate) fn comes_from_same_store(&self, store: &StoreOpaque) -> bool {
debug_assert!(self.inner.index.is_lifo());
self.inner.comes_from_same_store(store)
}
/// Create a [`ManuallyRooted<T>`][crate::ManuallyRooted] holding onto the
/// same GC object as `self`.
///
/// Returns `None` if `self` is used outside of its scope and has therefore
/// been unrooted.
///
/// This does not unroot `self`, and `self` remains valid until its
/// associated scope is exited.
///
/// # Panics
///
/// Panics if this object is not associate with the given store.
///
/// # Example
///
/// ```
/// # use wasmtime::*;
/// # fn _foo() -> Result<()> {
/// let mut store = Store::<()>::default();
///
/// let y: ManuallyRooted<_> = {
/// // Create a nested rooting scope.
/// let mut scope = RootScope::new(&mut store);
///
/// // `x` is only rooted within this nested scope.
/// let x: Rooted<_> = ExternRef::new(&mut scope, "hello!")?;
///
/// // Extend `x`'s rooting past its scope's lifetime by converting it
/// // to a `ManuallyRooted`.
/// x.to_manually_rooted(&mut scope)?
/// };
///
/// // Now we can still access the reference outside the scope it was
/// // originally defined within.
/// let data = y.data(&store)?;
/// let data = data.downcast_ref::<&str>().unwrap();
/// assert_eq!(*data, "hello!");
///
/// // But we have to manually unroot `y`.
/// y.unroot(&mut store);
/// # Ok(())
/// # }
/// ```
pub fn to_manually_rooted(&self, mut store: impl AsContextMut) -> Result<ManuallyRooted<T>> {
self._to_manually_rooted(store.as_context_mut().0)
}
pub(crate) fn _to_manually_rooted(&self, store: &mut StoreOpaque) -> Result<ManuallyRooted<T>> {
let mut store = AutoAssertNoGc::new(store);
let gc_ref = self.try_clone_gc_ref(&mut store)?;
Ok(ManuallyRooted::new(&mut store, gc_ref))
}
/// Are these two `Rooted<T>`s the same GC root?
///
/// Note that this function can return `false` even when `a` and `b` are
/// rooting the same underlying GC object, but the object was rooted
/// multiple times (for example in different scopes). Use
/// [`Rooted::ref_eq`][crate::Rooted::ref_eq] to test whether these are
/// references to the same underlying GC object or not.
///
/// # Example
///
/// ```
/// # use wasmtime::*;
/// # fn foo() -> Result<()> {
/// let mut store = Store::<()>::default();
///
/// let a = ExternRef::new(&mut store, "hello")?;
/// let b = a;
///
/// // `a` and `b` are the same GC root.
/// assert!(Rooted::rooted_eq(a, b));
///
/// {
/// let mut scope = RootScope::new(&mut store);
///
/// // `c` is a different GC root, in a different scope, even though it
/// // is rooting the same object.
/// let c = a.to_manually_rooted(&mut scope)?.into_rooted(&mut scope);
/// assert!(!Rooted::rooted_eq(a, c));
/// }
///
/// let x = ExternRef::new(&mut store, "goodbye")?;
///
/// // `a` and `x` are different GC roots, rooting different objects.
/// assert!(!Rooted::rooted_eq(a, x));
/// # Ok(())
/// # }
/// ```
pub fn rooted_eq(a: Self, b: Self) -> bool {
a.inner == b.inner
}
/// Are these two GC roots referencing the same underlying GC object?
///
/// This function will return `true` even when `a` and `b` are different GC
/// roots (for example because they were rooted in different scopes) if they
/// are rooting the same underlying GC object. To only test whether they are
/// the same GC root, and not whether they are rooting the same GC object,
/// use [`Rooted::rooted_eq`][crate::Rooted::rooted_eq].
///
/// Returns an error if either `a` or `b` has been unrooted, for example
/// because the scope it was rooted within has been exited.
///
/// Because this method takes any `impl RootedGcRef<T>` arguments, it can be
/// used to compare, for example, a `Rooted<T>` and a `ManuallyRooted<T>`.
///
/// # Panics
///
/// Panics if either `a` or `b` is not associated with the given `store`.
///
/// # Example
///
/// ```
/// # use wasmtime::*;
/// # fn foo() -> Result<()> {
/// let mut store = Store::<()>::default();
///
/// let a = ExternRef::new(&mut store, "hello")?;
/// let b = a;
///
/// // `a` and `b` are rooting the same object.
/// assert!(Rooted::ref_eq(&store, &a, &b)?);
///
/// {
/// let mut scope = RootScope::new(&mut store);
///
/// // `c` is a different GC root, in a different scope, but still
/// // rooting the same object.
/// let c = a.to_manually_rooted(&mut scope)?.into_rooted(&mut scope);
/// assert!(!Rooted::ref_eq(&scope, &a, &c)?);
/// }
///
/// let x = ExternRef::new(&mut store, "goodbye")?;
///
/// // `a` and `x` are rooting different objects.
/// assert!(!Rooted::ref_eq(&store, &a, &x)?);
///
/// // You can also compare `Rooted<T>`s and `ManuallyRooted<T>`s with this
/// // function.
/// let d = a.to_manually_rooted(&mut store)?;
/// assert!(Rooted::ref_eq(&store, &a, &d)?);
///
/// d.unroot(&mut store);
/// # Ok(())
/// # }
/// ```
pub fn ref_eq(
store: impl AsContext,
a: &impl RootedGcRef<T>,
b: &impl RootedGcRef<T>,
) -> Result<bool> {
let store = store.as_context().0;
let a = a.try_gc_ref(store)?;
let b = b.try_gc_ref(store)?;
Ok(a == b)
}
/// Hash this root.
///
/// Note that, similar to `Rooted::rooted_eq`, this only operates on the
/// root and *not* the underlying GC reference. That means that two
/// different rootings of the same object will hash to different values
/// (modulo hash collisions). If this is undesirable, use the
/// [`ref_hash`][crate::Rooted::ref_hash] method instead.
pub fn rooted_hash<H>(&self, state: &mut H)
where
H: Hasher,
{
self.inner.hash(state);
}
/// Hash the underlying rooted object reference.
///
/// Note that, similar to `Rooted::ref_eq`, and operates on the underlying
/// rooted GC object reference, not the root. That means that two
/// *different* rootings of the same object will hash to the *same*
/// value. If this is undesirable, use the
/// [`rooted_hash`][crate::Rooted::rooted_hash] method instead.
pub fn ref_hash<H>(&self, store: impl AsContext, state: &mut H) -> Result<()>
where
H: Hasher,
{
let gc_ref = self.try_gc_ref(store.as_context().0)?;
gc_ref.hash(state);
Ok(())
}
/// Cast `self` to a `Rooted<U>`.
///
/// It is the caller's responsibility to ensure that `self` is actually a
/// `U`. Failure to uphold this invariant will be memory safe but will
/// result in general incorrectness such as panics and wrong results.
pub(crate) fn unchecked_cast<U: GcRef>(self) -> Rooted<U> {
Rooted::from_gc_root_index(self.inner)
}
/// Common implementation of the `WasmTy::store` trait method for all
/// `Rooted<T>`s.
pub(super) fn wasm_ty_store(
self,
store: &mut AutoAssertNoGc<'_>,
ptr: &mut MaybeUninit<ValRaw>,
val_raw: impl Fn(u32) -> ValRaw,
) -> Result<()> {
let gc_ref = self.inner.try_clone_gc_ref(store)?;
let raw = gc_ref.as_raw_u32();
debug_assert_ne!(raw, 0);
store.gc_store_mut()?.expose_gc_ref_to_wasm(gc_ref);
ptr.write(val_raw(raw));
Ok(())
}
/// Common implementation of the `WasmTy::load` trait method for all
/// `Rooted<T>`s.
pub(super) fn wasm_ty_load(
store: &mut AutoAssertNoGc<'_>,
raw_gc_ref: u32,
from_cloned_gc_ref: impl Fn(&mut AutoAssertNoGc<'_>, VMGcRef) -> Self,
) -> Self {
debug_assert_ne!(raw_gc_ref, 0);
let gc_ref = VMGcRef::from_raw_u32(raw_gc_ref).expect("non-null");
let gc_ref = store.unwrap_gc_store_mut().clone_gc_ref(&gc_ref);
from_cloned_gc_ref(store, gc_ref)
}
/// Common implementation of the `WasmTy::store` trait method for all
/// `Option<Rooted<T>>`s.
pub(super) fn wasm_ty_option_store(
me: Option<Self>,
store: &mut AutoAssertNoGc<'_>,
ptr: &mut MaybeUninit<ValRaw>,
val_raw: impl Fn(u32) -> ValRaw,
) -> Result<()> {
match me {
Some(me) => me.wasm_ty_store(store, ptr, val_raw),
None => {
ptr.write(val_raw(0));
Ok(())
}
}
}
/// Common implementation of the `WasmTy::load` trait method for all
/// `Option<Rooted<T>>`s.
pub(super) fn wasm_ty_option_load(
store: &mut AutoAssertNoGc<'_>,
raw_gc_ref: u32,
from_cloned_gc_ref: impl Fn(&mut AutoAssertNoGc<'_>, VMGcRef) -> Self,
) -> Option<Self> {
let gc_ref = VMGcRef::from_raw_u32(raw_gc_ref)?;
let gc_ref = store.unwrap_gc_store_mut().clone_gc_ref(&gc_ref);
Some(from_cloned_gc_ref(store, gc_ref))
}
}
/// Nested rooting scopes.
///
/// `RootScope` allows the creation or nested rooting scopes for use with
/// [`Rooted<T>`][crate::Rooted]. This allows for fine-grained control over how
/// long a set of [`Rooted<T>`][crate::Rooted]s are strongly held alive, giving
/// gives you the tools necessary to avoid holding onto GC objects longer than
/// necessary. `Rooted<T>`s created within a `RootScope` are automatically
/// unrooted when the `RootScope` is dropped. For more details on
/// [`Rooted<T>`][crate::Rooted] lifetimes and their interaction with rooting
/// scopes, see [`Rooted<T>`][crate::Rooted]'s documentation.
///
/// A `RootScope<C>` wraps a `C: AsContextMut` (that is, anything that
/// represents exclusive access to a [`Store`][crate::Store]) and in turn
/// implements [`AsContext`][crate::AsContext] and
/// [`AsContextMut`][crate::AsContextMut] in terms of its underlying
/// `C`. Therefore, `RootScope<C>` can be used anywhere you would use the
/// underlying `C`, for example in the [`Global::get`][crate::Global::get]
/// method. Any `Rooted<T>`s created by a method that a `RootScope<C>` was
/// passed as context to are tied to the `RootScope<C>`'s scope and
/// automatically unrooted when the scope is dropped.
///
/// # Example
///
/// ```
/// # use wasmtime::*;
/// # fn _foo() -> Result<()> {
/// let mut store = Store::<()>::default();
///
/// let a: Rooted<_>;
/// let b: Rooted<_>;
/// let c: Rooted<_>;
///
/// // Root `a` in the store's scope. It will be rooted for the duration of the
/// // store's lifetime.
/// a = ExternRef::new(&mut store, 42)?;
///
/// // `a` is rooted, so we can access its data successfully.
/// assert!(a.data(&store).is_ok());
///
/// {
/// let mut scope1 = RootScope::new(&mut store);
///
/// // Root `b` in `scope1`.
/// b = ExternRef::new(&mut scope1, 36)?;
///
/// // Both `a` and `b` are rooted.
/// assert!(a.data(&scope1).is_ok());
/// assert!(b.data(&scope1).is_ok());
///
/// {
/// let mut scope2 = RootScope::new(&mut scope1);
///
/// // Root `c` in `scope2`.
/// c = ExternRef::new(&mut scope2, 36)?;
///
/// // All of `a`, `b`, and `c` are rooted.
/// assert!(a.data(&scope2).is_ok());
/// assert!(b.data(&scope2).is_ok());
/// assert!(c.data(&scope2).is_ok());
///
/// // Drop `scope2`.
/// }
///
/// // Now `a` and `b` are still rooted, but `c` was unrooted when we dropped
/// // `scope2`.
/// assert!(a.data(&scope1).is_ok());
/// assert!(b.data(&scope1).is_ok());
/// assert!(c.data(&scope1).is_err());
///
/// // Drop `scope1`.
/// }
///
/// // And now only `a` is still rooted. Both `b` and `c` were unrooted when we
/// // dropped their respective rooting scopes.
/// assert!(a.data(&store).is_ok());
/// assert!(b.data(&store).is_err());
/// assert!(c.data(&store).is_err());
/// # Ok(())
/// # }
/// ```
pub struct RootScope<C>
where
C: AsContextMut,
{
store: C,
scope: usize,
}
impl<C> Drop for RootScope<C>
where
C: AsContextMut,
{
fn drop(&mut self) {
self.store.as_context_mut().0.exit_gc_lifo_scope(self.scope);
}
}
impl<C> RootScope<C>
where
C: AsContextMut,
{
// NB: we MUST NOT expose a method like
//
// pub fn store(&mut self) -> &mut Store { ... }
//
// because callers could do treacherous things like
//
// let scope1 = RootScope::new(&mut store1);
// let scope2 = RootScope::new(&mut store2);
// std::mem::swap(scope1.store(), scope2.store());
//
// and then we would start truncate the store's GC root set's LIFO roots to
// the wrong lengths.
//
// Instead, we just implement `AsContext[Mut]` for `RootScope`.
/// Construct a new scope for rooting GC objects.
///
/// # Example
///
/// ```
/// # use wasmtime::*;
/// let mut store = Store::<()>::default();
///
/// {
/// let mut scope = RootScope::new(&mut store);
///
/// // Temporarily root GC objects in this nested rooting scope...
/// }
/// ```
pub fn new(store: C) -> Self {
let scope = store.as_context().0.gc_roots().enter_lifo_scope();
RootScope { store, scope }
}
fn gc_roots(&mut self) -> &mut RootSet {
self.store.as_context_mut().0.gc_roots_mut()
}
fn lifo_roots(&mut self) -> &mut Vec<LifoRoot> {
&mut self.gc_roots().lifo_roots
}
/// Reserve enough capacity for `additional` GC roots in this scope.
///
/// # Example
///
/// ```
/// # use wasmtime::*;
/// let mut store = Store::<()>::default();
///
/// {
/// let mut scope = RootScope::new(&mut store);
///
/// // Ensure we have enough storage pre-allocated to root five GC
/// // references inside this scope without any underlying reallocation.
/// scope.reserve(5);
///
/// // ...
/// }
/// ```
pub fn reserve(&mut self, additional: usize) {
self.lifo_roots().reserve(additional);
}
}
impl<T> AsContext for RootScope<T>
where
T: AsContextMut,
{
type Data = T::Data;
fn as_context(&self) -> crate::StoreContext<'_, Self::Data> {
self.store.as_context()
}
}
impl<T> AsContextMut for RootScope<T>
where
T: AsContextMut,
{
fn as_context_mut(&mut self) -> crate::StoreContextMut<'_, Self::Data> {
self.store.as_context_mut()
}
}
/// A rooted reference to a garbage-collected `T` with arbitrary lifetime.
///
/// A `ManuallyRooted<T>` is a strong handle to a garbage-collected `T`,
/// preventing its referent (and anything else transitively referenced) from
/// being collected by the GC until [`unroot`][crate::ManuallyRooted::unroot] is
/// explicitly called.
///
/// The primary way to create a `ManuallyRooted<T>` is to promote a temporary
/// `Rooted<T>` into a `ManuallyRooted<T>` via its
/// [`to_manually_rooted`][crate::Rooted::to_manually_rooted] method.
///
/// `ManuallyRooted<T>` dereferences to its underlying `T`, allowing you to call
/// `T`'s methods.
///
/// # Example
///
/// ```
/// # use wasmtime::*;
/// # fn _foo() -> Result<()> {
/// let mut store = Store::<Option<ManuallyRooted<ExternRef>>>::default();
///
/// // Create our `ManuallyRooted` in a nested scope to avoid rooting it for
/// // the duration of the store's lifetime.
/// let x = {
/// let mut scope = RootScope::new(&mut store);
/// let x = ExternRef::new(&mut scope, 1234)?;
/// x.to_manually_rooted(&mut scope)?
/// };
///
/// // Place `x` into our store.
/// *store.data_mut() = Some(x);
///
/// // Do a bunch stuff that may or may not access, replace, or take `x`...
///
/// // At any time, in any arbitrary scope, we can remove `x` from the store
/// // and unroot it:
/// if let Some(x) = store.data_mut().take() {
/// x.unroot(&mut store);
/// }
/// # Ok(())
/// # }
/// ```
///
/// # Differences Between `ManuallyRooted<T>` and `Rooted<T>`
///
/// While `ManuallyRooted<T>` can have arbitrary lifetimes, it requires manual
/// unrooting. This is in contrast to [`Rooted<T>`][crate::Rooted] which is
/// restricted to strictly last-in-first-out (LIFO, aka stack order) lifetimes,
/// but comes with automatic unrooting.
///
/// | Type | Supported Lifetimes | Unrooting |
/// |----------------------------------------------|-----------------------------|-----------|
/// | [`Rooted<T>`][crate::Rooted] | Strictly LIFO / stack order | Automatic |
/// | [`ManuallyRooted<T>`][crate::ManuallyRooted] | Arbitrary | Manual |
///
/// `Rooted<T>` should suffice for most use cases, and provides better
/// ergonomics, but `ManuallyRooted<T>` exists as a fully-general escape hatch.
///
/// # Manual Unrooting
///
/// Failure to explicitly call [`unroot`][crate::ManuallyRooted::unroot] (or
/// another method that consumes `self` and unroots the reference, such as
/// [`into_rooted`][crate::ManuallyRooted::into_rooted]) will leak the
/// underlying GC object, preventing it from being garbage collected until its
/// owning [`Store`][crate::Store] is dropped. That means all of the following
/// will result in permanently rooting the underlying GC object:
///
/// * Implicitly dropping a `ManuallyRooted<T>`:
///
/// ```no_run
/// # use wasmtime::*;
/// # let get_manually_rooted = || -> ManuallyRooted<ExternRef> { todo!() };
/// {
/// let perma_root: ManuallyRooted<_> = get_manually_rooted();
///
/// // `perma_root` is implicitly dropped at the end of its scope,
/// // permanently rooting/leaking its referent.
/// }
/// ```
///
/// * Explicitly dropping a `ManuallyRooted<T>`: `drop(my_manually_rooted)`.
///
/// * Forgetting a `ManuallyRooted<T>`: `std::mem::forget(my_manually_rooted)`.
///
/// * Inserting a `ManuallyRooted<T>` into a `std::sync::Arc` or `std::rc::Rc`
/// cycle.
///
/// * Etc...
///
/// Wasmtime does *not* assert that a `ManuallyRooted<T>` is unrooted on `Drop`,
/// or otherwise raise a panic, log a warning, or etc... on failure to manually
/// unroot. Sometimes leaking is intentional and desirable, particularly when
/// dealing with short-lived [`Store`][crate::Store]s where unrooting would just
/// be busy work since the whole store is about to be dropped.
#[repr(transparent)] // NB: the C API relies on this
pub struct ManuallyRooted<T>
where
T: GcRef,
{
inner: GcRootIndex,
_phantom: marker::PhantomData<T>,
}
const _: () = {
use crate::{AnyRef, ExternRef};
// NB: these match the C API which should also be updated if this changes
assert!(mem::size_of::<ManuallyRooted<AnyRef>>() == 16);
assert!(mem::align_of::<ManuallyRooted<AnyRef>>() == mem::align_of::<u64>());
assert!(mem::size_of::<ManuallyRooted<ExternRef>>() == 16);
assert!(mem::align_of::<ManuallyRooted<ExternRef>>() == mem::align_of::<u64>());
};
impl<T: GcRef> Debug for ManuallyRooted<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let name = format!("ManuallyRooted<{}>", any::type_name::<T>());
f.debug_struct(&name).field("inner", &self.inner).finish()
}
}
impl<T: GcRef> Deref for ManuallyRooted<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
T::transmute_ref(&self.inner)
}
}
impl<T> ManuallyRooted<T>
where
T: GcRef,
{
/// Construct a new manually-rooted GC root.
///
/// `gc_ref` should belong to `store`'s heap; failure to uphold this is
/// memory safe but will result in general failures down the line such as
/// panics or incorrect results.
///
/// `gc_ref` should be a GC reference pointing to an instance of the GC type
/// that `T` represents. Failure to uphold this invariant is memory safe but
/// will result in general incorrectness such as panics and wrong results.
pub(crate) fn new(store: &mut AutoAssertNoGc<'_>, gc_ref: VMGcRef) -> Self {
let id = store.gc_roots_mut().manually_rooted.alloc(gc_ref);
ManuallyRooted {
inner: GcRootIndex {
store_id: store.id(),
generation: 0,
index: PackedIndex::new_manual(id),
},
_phantom: marker::PhantomData,
}
}
#[inline]
pub(crate) fn comes_from_same_store(&self, store: &StoreOpaque) -> bool {
debug_assert!(self.inner.index.is_manual());
self.inner.comes_from_same_store(store)
}
/// Clone this `ManuallyRooted`.
///
/// Does not consume or unroot `self`: both `self` and the new
/// `ManuallyRooted` return value will need to be manually unrooted.
///
/// # Panics
///
/// Panics if `self` is not associated with the given `store`.
///
/// # Example
///
/// ```
/// # use wasmtime::*;
/// # fn _foo() -> Result<()> {
/// let mut store = Store::<Vec<ManuallyRooted<ExternRef>>>::default();
///
/// // Create our `ManuallyRooted` in a nested scope to avoid rooting it for
/// // the duration of the store's lifetime.
/// let x = {
/// let mut scope = RootScope::new(&mut store);
/// let x = ExternRef::new(&mut scope, 1234)?;
/// x.to_manually_rooted(&mut scope)?
/// };
///
/// // Push five clones of `x` into our store.
/// for _ in 0..5 {
/// let x_clone = x.clone(&mut store);
/// store.data_mut().push(x_clone);
/// }
/// # Ok(())
/// # }
/// ```
pub fn clone(&self, mut store: impl AsContextMut) -> Self {
self._clone(store.as_context_mut().0)
}
pub(crate) fn _clone(&self, store: &mut StoreOpaque) -> Self {
let mut store = AutoAssertNoGc::new(store);
let gc_ref = self
.clone_gc_ref(&mut store)
.expect("ManuallyRooted always has a gc ref");
Self::new(&mut store, gc_ref)
}
/// Unroot this GC object.
///
/// Failure to call this method will result in the GC object, and anything
/// it transitively references, being kept alive (aka "leaking") for the
/// entirety of the store's lifetime.
///
/// See the type-level docs for example usage.
pub fn unroot(self, mut store: impl AsContextMut) {
self._unroot(store.as_context_mut().0)
}
pub(crate) fn _unroot(self, store: &mut StoreOpaque) {
assert!(
self.comes_from_same_store(store),
"object used with wrong store"
);
let mut store = AutoAssertNoGc::new(store);
let id = self.inner.index.as_manual().unwrap();
let roots = store.gc_roots_mut();
let gc_ref = roots.manually_rooted.dealloc(id);
store.unwrap_gc_store_mut().drop_gc_ref(gc_ref);
}
/// Clone this `ManuallyRooted<T>` into a `Rooted<T>`.
///
/// This operation does not consume or unroot this `ManuallyRooted<T>`.
///
/// The underlying GC object is re-rooted in the given context's scope. The
/// resulting `Rooted<T>` is only valid during the given context's
/// scope. See the [`Rooted<T>`][crate::Rooted] documentation for more
/// details on rooting scopes.
///
/// This operation does not consume or unroot this `ManuallyRooted<T>`.
///
/// # Panics
///
/// Panics if this object is not associated with the given context's store.
///
/// # Example
///
/// ```
/// # use wasmtime::*;
/// # fn _foo() -> Result<()> {
/// let mut store = Store::<()>::default();
///
/// let root1: Rooted<_>;
///
/// let manual = {
/// let mut scope = RootScope::new(&mut store);
/// root1 = ExternRef::new(&mut scope, 1234)?;
/// root1.to_manually_rooted(&mut scope)?
/// };
///
/// // `root1` is no longer accessible because it was unrooted when `scope`
/// // was dropped.
/// assert!(root1.data(&store).is_err());
///
/// // But we can re-root `manual` into this scope.
/// let root2 = manual.to_rooted(&mut store);
/// assert!(root2.data(&store).is_ok());
///
/// // And we also still have access to `manual` and we still have to
/// // manually unroot it.
/// assert!(manual.data(&store).is_ok());
/// manual.unroot(&mut store);
/// # Ok(())
/// # }
/// ```
pub fn to_rooted(&self, mut context: impl AsContextMut) -> Rooted<T> {
self._to_rooted(context.as_context_mut().0)
}
pub(crate) fn _to_rooted(&self, store: &mut StoreOpaque) -> Rooted<T> {
assert!(
self.comes_from_same_store(store),
"object used with wrong store"
);
let mut store = AutoAssertNoGc::new(store);
let gc_ref = self.clone_gc_ref(&mut store).unwrap();
Rooted::new(&mut store, gc_ref)
}
/// Convert this `ManuallyRooted<T>` into a `Rooted<T>`.
///
/// The underlying GC object is re-rooted in the given context's scope. The
/// resulting `Rooted<T>` is only valid during the given context's
/// scope. See the [`Rooted<T>`][crate::Rooted] documentation for more
/// details on rooting scopes.
///
/// This operation consumes and unroots this `ManuallyRooted<T>`.
///
/// # Panics
///
/// Panics if this object is not associate with the given context's store.
///
/// # Example
///
/// ```
/// # use wasmtime::*;
/// # fn _foo() -> Result<()> {
/// let mut store = Store::<()>::default();
///
/// let root1: Rooted<_>;
///
/// let manual = {
/// let mut scope = RootScope::new(&mut store);
/// root1 = ExternRef::new(&mut scope, 1234)?;
/// root1.to_manually_rooted(&mut scope)?
/// };
///
/// // `root1` is no longer accessible because it was unrooted when `scope`
/// // was dropped.
/// assert!(root1.data(&store).is_err());
///
/// // But we can re-root `manual` into this scope.
/// let root2 = manual.into_rooted(&mut store);
/// assert!(root2.data(&store).is_ok());
///
/// // `manual` was consumed by the `into_rooted` call, and we no longer
/// // have access to it, nor need to manually unroot it.
/// # Ok(())
/// # }
/// ```
pub fn into_rooted(self, mut context: impl AsContextMut) -> Rooted<T> {
self._into_rooted(context.as_context_mut().0)
}
pub(crate) fn _into_rooted(self, store: &mut StoreOpaque) -> Rooted<T> {
assert!(
self.comes_from_same_store(store),
"object used with wrong store"
);
let rooted = self._to_rooted(store);
self._unroot(store);
rooted
}
/// Are these two GC roots referencing the same underlying GC object?
///
/// This function will return `true` even when `a` and `b` are different GC
/// roots (for example because they were rooted in different scopes) if they
/// are rooting the same underlying GC object.
///
/// Because this method takes any `impl RootedGcRef<T>` arguments, it can be
/// used to compare, for example, a `Rooted<T>` and a `ManuallyRooted<T>`.
///
/// # Panics
///
/// Panics if either `a` or `b` is not associated with the given `store`.
///
/// # Example
///
/// ```
/// # use wasmtime::*;
/// # fn foo() -> Result<()> {
/// let mut store = Store::<()>::default();
///
/// let a = ExternRef::new_manually_rooted(&mut store, "hello")?;
/// let b = a.clone(&mut store);
///
/// // `a` and `b` are rooting the same object.
/// assert!(ManuallyRooted::ref_eq(&store, &a, &b)?);
///
/// {
/// let mut scope = RootScope::new(&mut store);
///
/// // `c` is a different GC root, is in a different scope, and is a
/// // `Rooted<T>` instead of a `ManuallyRooted<T>`, but is still rooting
/// // the same object.
/// let c = a.to_rooted(&mut scope);
/// assert!(ManuallyRooted::ref_eq(&scope, &a, &c)?);
/// }
///
/// let x = ExternRef::new_manually_rooted(&mut store, "goodbye")?;
///
/// // `a` and `x` are rooting different objects.
/// assert!(!ManuallyRooted::ref_eq(&store, &a, &x)?);
///
/// a.unroot(&mut store);
/// b.unroot(&mut store);
/// x.unroot(&mut store);
/// # Ok(())
/// # }
/// ```
pub fn ref_eq(
store: impl AsContext,
a: &impl RootedGcRef<T>,
b: &impl RootedGcRef<T>,
) -> Result<bool> {
Rooted::ref_eq(store, a, b)
}
/// Hash this root.
///
/// Note that, similar to `Rooted::rooted_eq`, this only operates on the
/// root and *not* the underlying GC reference. That means that two
/// different rootings of the same object will hash to different values
/// (modulo hash collisions). If this is undesirable, use the
/// [`ref_hash`][crate::ManuallyRooted::ref_hash] method instead.
pub fn rooted_hash<H>(&self, state: &mut H)
where
H: Hasher,
{
self.inner.hash(state);
}
/// Hash the underlying rooted object reference.
///
/// Note that, similar to `Rooted::ref_eq`, and operates on the underlying
/// rooted GC object reference, not the root. That means that two
/// *different* rootings of the same object will hash to the *same*
/// value. If this is undesirable, use the
/// [`rooted_hash`][crate::Rooted::rooted_hash] method instead.
pub fn ref_hash<H>(&self, store: impl AsContext, state: &mut H)
where
H: Hasher,
{
let gc_ref = self
.get_gc_ref(store.as_context().0)
.expect("ManuallyRooted's get_gc_ref is infallible");
gc_ref.hash(state);
}
#[doc(hidden)]
pub fn into_parts_for_c_api(self) -> (NonZeroU64, u32, u32) {
(
self.inner.store_id.as_raw(),
self.inner.generation,
self.inner.index.0,
)
}
#[doc(hidden)]
pub unsafe fn from_raw_parts_for_c_api(a: NonZeroU64, b: u32, c: u32) -> ManuallyRooted<T> {
ManuallyRooted {
inner: GcRootIndex {
store_id: StoreId::from_raw(a),
generation: b,
index: PackedIndex(c),
},
_phantom: marker::PhantomData,
}
}
/// Cast `self` to a `ManuallyRooted<U>`.
///
/// It is the caller's responsibility to ensure that `self` is actually a
/// `U`. Failure to uphold this invariant will be memory safe but will
/// result in general incorrectness such as panics and wrong results.
pub(crate) fn unchecked_cast<U: GcRef>(self) -> ManuallyRooted<U> {
let u = ManuallyRooted {
inner: self.inner,
_phantom: core::marker::PhantomData,
};
core::mem::forget(self);
u
}
/// Common implementation of the `WasmTy::store` trait method for all
/// `ManuallyRooted<T>`s.
pub(super) fn wasm_ty_store(
self,
store: &mut AutoAssertNoGc<'_>,
ptr: &mut MaybeUninit<ValRaw>,
val_raw: impl Fn(u32) -> ValRaw,
) -> Result<()> {
let gc_ref = self.try_clone_gc_ref(store)?;
let raw = gc_ref.as_raw_u32();
debug_assert_ne!(raw, 0);
store.gc_store_mut()?.expose_gc_ref_to_wasm(gc_ref);
ptr.write(val_raw(raw));
Ok(())
}
/// Common implementation of the `WasmTy::load` trait method for all
/// `ManuallyRooted<T>`s.
pub(super) fn wasm_ty_load(
store: &mut AutoAssertNoGc<'_>,
raw_gc_ref: u32,
from_cloned_gc_ref: impl Fn(&mut AutoAssertNoGc<'_>, VMGcRef) -> Rooted<T>,
) -> Self {
debug_assert_ne!(raw_gc_ref, 0);
let gc_ref = VMGcRef::from_raw_u32(raw_gc_ref).expect("non-null");
let gc_ref = store.unwrap_gc_store_mut().clone_gc_ref(&gc_ref);
RootSet::with_lifo_scope(store, |store| {
let rooted = from_cloned_gc_ref(store, gc_ref);
rooted
._to_manually_rooted(store)
.expect("rooted is in scope")
})
}
/// Common implementation of the `WasmTy::store` trait method for all
/// `Option<ManuallyRooted<T>>`s.
pub(super) fn wasm_ty_option_store(
me: Option<Self>,
store: &mut AutoAssertNoGc<'_>,
ptr: &mut MaybeUninit<ValRaw>,
val_raw: impl Fn(u32) -> ValRaw,
) -> Result<()> {
match me {
Some(me) => me.wasm_ty_store(store, ptr, val_raw),
None => {
ptr.write(val_raw(0));
Ok(())
}
}
}
/// Common implementation of the `WasmTy::load` trait method for all
/// `Option<ManuallyRooted<T>>`s.
pub(super) fn wasm_ty_option_load(
store: &mut AutoAssertNoGc<'_>,
raw_gc_ref: u32,
from_cloned_gc_ref: impl Fn(&mut AutoAssertNoGc<'_>, VMGcRef) -> Rooted<T>,
) -> Option<Self> {
let gc_ref = VMGcRef::from_raw_u32(raw_gc_ref)?;
let gc_ref = store.unwrap_gc_store_mut().clone_gc_ref(&gc_ref);
RootSet::with_lifo_scope(store, |store| {
let rooted = from_cloned_gc_ref(store, gc_ref);
Some(
rooted
._to_manually_rooted(store)
.expect("rooted is in scope"),
)
})
}
}
impl<T: GcRef> RootedGcRefImpl<T> for ManuallyRooted<T> {
fn get_gc_ref<'a>(&self, store: &'a StoreOpaque) -> Option<&'a VMGcRef> {
assert!(
self.comes_from_same_store(store),
"object used with wrong store"
);
let id = self.inner.index.as_manual().unwrap();
store.gc_roots().manually_rooted.get(id)
}
}
#[cfg(test)]
mod tests {
use crate::ExternRef;
use super::*;
#[test]
fn sizes() {
// Try to keep tabs on the size of these things. Don't want them growing
// unintentionally.
assert_eq!(std::mem::size_of::<Rooted<ExternRef>>(), 16);
assert_eq!(std::mem::size_of::<ManuallyRooted<ExternRef>>(), 16);
}
}