secrecy/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
//! [`SecretBox`] wrapper type for more carefully handling secret values
//! (e.g. passwords, cryptographic keys, access tokens or other credentials)
//!
//! # Goals
//!
//! - Make secret access explicit and easy-to-audit via the
//! [`ExposeSecret`] and [`ExposeSecretMut`] traits.
//! - Prevent accidental leakage of secrets via channels like debug logging
//! - Ensure secrets are wiped from memory on drop securely
//! (using the [`zeroize`] crate)
//!
//! Presently this crate favors a simple, `no_std`-friendly, safe i.e.
//! `forbid(unsafe_code)`-based implementation and does not provide more advanced
//! memory protection mechanisms e.g. ones based on `mlock(2)`/`mprotect(2)`.
//! We may explore more advanced protection mechanisms in the future.
//! Those who don't mind `std` and `libc` dependencies should consider using
//! the [`secrets`](https://crates.io/crates/secrets) crate.
//!
//! # `serde` support
//!
//! When the `serde` feature of this crate is enabled, the [`SecretBox`] type will
//! receive a [`Deserialize`] impl for all `SecretBox<T>` types where
//! `T: DeserializeOwned`. This allows *loading* secret values from data
//! deserialized from `serde` (be careful to clean up any intermediate secrets
//! when doing this, e.g. the unparsed input!)
//!
//! To prevent exfiltration of secret values via `serde`, by default `SecretBox<T>`
//! does *not* receive a corresponding [`Serialize`] impl. If you would like
//! types of `SecretBox<T>` to be serializable with `serde`, you will need to impl
//! the [`SerializableSecret`] marker trait on `T`.
#![no_std]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![forbid(unsafe_code)]
#![warn(missing_docs, rust_2018_idioms, unused_qualifications)]
extern crate alloc;
use alloc::{boxed::Box, string::String, vec::Vec};
use core::{
any,
fmt::{self, Debug},
};
use zeroize::{Zeroize, ZeroizeOnDrop};
#[cfg(feature = "serde")]
use serde::{de, ser, Deserialize, Serialize};
pub use zeroize;
/// Wrapper type for values that contains secrets, which attempts to limit
/// accidental exposure and ensure secrets are wiped from memory when dropped.
/// (e.g. passwords, cryptographic keys, access tokens or other credentials)
///
/// Access to the secret inner value occurs through the [`ExposeSecret`]
/// or [`ExposeSecretMut`] traits, which provide methods for accessing the inner secret value.
pub struct SecretBox<S: Zeroize + ?Sized> {
inner_secret: Box<S>,
}
impl<S: Zeroize + ?Sized> Zeroize for SecretBox<S> {
fn zeroize(&mut self) {
self.inner_secret.as_mut().zeroize()
}
}
impl<S: Zeroize + ?Sized> Drop for SecretBox<S> {
fn drop(&mut self) {
self.zeroize()
}
}
impl<S: Zeroize + ?Sized> ZeroizeOnDrop for SecretBox<S> {}
impl<S: Zeroize + ?Sized> From<Box<S>> for SecretBox<S> {
fn from(source: Box<S>) -> Self {
Self::new(source)
}
}
impl<S: Zeroize + ?Sized> SecretBox<S> {
/// Create a secret value using a pre-boxed value.
pub fn new(boxed_secret: Box<S>) -> Self {
Self {
inner_secret: boxed_secret,
}
}
}
impl<S: Zeroize + Default> SecretBox<S> {
/// Create a secret value using a function that can initialize the value in-place.
pub fn init_with_mut(ctr: impl FnOnce(&mut S)) -> Self {
let mut secret = Self::default();
ctr(secret.expose_secret_mut());
secret
}
}
impl<S: Zeroize + Clone> SecretBox<S> {
/// Create a secret value using the provided function as a constructor.
///
/// The implementation makes an effort to zeroize the locally constructed value
/// before it is copied to the heap, and constructing it inside the closure minimizes
/// the possibility of it being accidentally copied by other code.
///
/// **Note:** using [`Self::new`] or [`Self::init_with_mut`] is preferable when possible,
/// since this method's safety relies on empiric evidence and may be violated on some targets.
pub fn init_with(ctr: impl FnOnce() -> S) -> Self {
let mut data = ctr();
let secret = Self {
inner_secret: Box::new(data.clone()),
};
data.zeroize();
secret
}
/// Same as [`Self::init_with`], but the constructor can be fallible.
///
///
/// **Note:** using [`Self::new`] or [`Self::init_with_mut`] is preferable when possible,
/// since this method's safety relies on empyric evidence and may be violated on some targets.
pub fn try_init_with<E>(ctr: impl FnOnce() -> Result<S, E>) -> Result<Self, E> {
let mut data = ctr()?;
let secret = Self {
inner_secret: Box::new(data.clone()),
};
data.zeroize();
Ok(secret)
}
}
impl<S: Zeroize + Default> Default for SecretBox<S> {
fn default() -> Self {
Self {
inner_secret: Box::<S>::default(),
}
}
}
impl<S: Zeroize + ?Sized> Debug for SecretBox<S> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "SecretBox<{}>([REDACTED])", any::type_name::<S>())
}
}
impl<S> Clone for SecretBox<S>
where
S: CloneableSecret,
{
fn clone(&self) -> Self {
SecretBox {
inner_secret: self.inner_secret.clone(),
}
}
}
impl<S: Zeroize + ?Sized> ExposeSecret<S> for SecretBox<S> {
fn expose_secret(&self) -> &S {
self.inner_secret.as_ref()
}
}
impl<S: Zeroize + ?Sized> ExposeSecretMut<S> for SecretBox<S> {
fn expose_secret_mut(&mut self) -> &mut S {
self.inner_secret.as_mut()
}
}
/// Secret slice type.
///
/// This is a type alias for [`SecretBox<[S]>`] which supports some helpful trait impls.
///
/// Notably it has a [`From<Vec<S>>`] impl which is the preferred method for construction.
pub type SecretSlice<S> = SecretBox<[S]>;
impl<S> From<Vec<S>> for SecretSlice<S>
where
S: Zeroize,
[S]: Zeroize,
{
fn from(vec: Vec<S>) -> Self {
Self::from(vec.into_boxed_slice())
}
}
impl<S> Clone for SecretSlice<S>
where
S: CloneableSecret + Zeroize,
[S]: Zeroize,
{
fn clone(&self) -> Self {
SecretBox {
inner_secret: Vec::from(&*self.inner_secret).into_boxed_slice(),
}
}
}
impl<S> Default for SecretSlice<S>
where
S: Zeroize,
[S]: Zeroize,
{
fn default() -> Self {
Vec::new().into()
}
}
/// Secret string type.
///
/// This is a type alias for [`SecretBox<str>`] which supports some helpful trait impls.
///
/// Notably it has a [`From<String>`] impl which is the preferred method for construction.
pub type SecretString = SecretBox<str>;
impl From<String> for SecretString {
fn from(s: String) -> Self {
Self::from(s.into_boxed_str())
}
}
impl From<&str> for SecretString {
fn from(s: &str) -> Self {
Self::from(String::from(s))
}
}
impl Clone for SecretString {
fn clone(&self) -> Self {
SecretBox {
inner_secret: self.inner_secret.clone(),
}
}
}
impl Default for SecretString {
fn default() -> Self {
String::default().into()
}
}
/// Marker trait for secrets which are allowed to be cloned
pub trait CloneableSecret: Clone + Zeroize {}
// Mark integer primitives as cloneable secrets
impl CloneableSecret for i8 {}
impl CloneableSecret for i16 {}
impl CloneableSecret for i32 {}
impl CloneableSecret for i64 {}
impl CloneableSecret for i128 {}
impl CloneableSecret for isize {}
impl CloneableSecret for u8 {}
impl CloneableSecret for u16 {}
impl CloneableSecret for u32 {}
impl CloneableSecret for u64 {}
impl CloneableSecret for u128 {}
impl CloneableSecret for usize {}
/// Expose a reference to an inner secret
pub trait ExposeSecret<S: ?Sized> {
/// Expose secret: this is the only method providing access to a secret.
fn expose_secret(&self) -> &S;
}
/// Expose a mutable reference to an inner secret
pub trait ExposeSecretMut<S: ?Sized> {
/// Expose secret: this is the only method providing access to a secret.
fn expose_secret_mut(&mut self) -> &mut S;
}
/// Marker trait for secret types which can be [`Serialize`]-d by [`serde`].
///
/// When the `serde` feature of this crate is enabled and types are marked with
/// this trait, they receive a [`Serialize` impl][1] for `SecretBox<T>`.
/// (NOTE: all types which impl `DeserializeOwned` receive a [`Deserialize`]
/// impl)
///
/// This is done deliberately to prevent accidental exfiltration of secrets
/// via `serde` serialization.
///
/// If you really want to have `serde` serialize those types, use the
/// [`serialize_with`][2] attribute to specify a serializer that exposes the secret.
///
/// [1]: https://docs.rs/secrecy/latest/secrecy/struct.Secret.html#implementations
/// [2]: https://serde.rs/field-attrs.html#serialize_with
#[cfg(feature = "serde")]
pub trait SerializableSecret: Serialize {}
#[cfg(feature = "serde")]
impl<'de, T> Deserialize<'de> for SecretBox<T>
where
T: Zeroize + Clone + de::DeserializeOwned + Sized,
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: de::Deserializer<'de>,
{
Self::try_init_with(|| T::deserialize(deserializer))
}
}
#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for SecretString {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: de::Deserializer<'de>,
{
String::deserialize(deserializer).map(Into::into)
}
}
#[cfg(feature = "serde")]
impl<T> Serialize for SecretBox<T>
where
T: Zeroize + SerializableSecret + Serialize + Sized,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: ser::Serializer,
{
self.expose_secret().serialize(serializer)
}
}