cranelift_codegen/dominator_tree/
simple.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
//! A Dominator Tree represented as mappings of Blocks to their immediate dominator.
//! Computed using Keith D. Cooper's "Simple, Fast Dominator Algorithm."   
//! This version have been used in Cranelift for a very long time
//! and should be quite stable. Used as a baseline i.e. in verification.

use crate::entity::SecondaryMap;
use crate::flowgraph::{BlockPredecessor, ControlFlowGraph};
use crate::ir::{Block, Function, Layout, ProgramPoint};
use crate::packed_option::PackedOption;
use crate::timing;
use crate::traversals::Dfs;
use alloc::vec::Vec;
use core::cmp::Ordering;

/// RPO numbers are not first assigned in a contiguous way but as multiples of STRIDE, to leave
/// room for modifications of the dominator tree.
const STRIDE: u32 = 4;

/// Dominator tree node. We keep one of these per block.
#[derive(Clone, Default)]
struct DomNode {
    /// Number of this node in a reverse post-order traversal of the CFG, starting from 1.
    /// This number is monotonic in the reverse postorder but not contiguous, since we leave
    /// holes for later localized modifications of the dominator tree.
    /// Unreachable nodes get number 0, all others are positive.
    rpo_number: u32,

    /// The immediate dominator of this block.
    ///
    /// This is `None` for unreachable blocks and the entry block which doesn't have an immediate
    /// dominator.
    idom: PackedOption<Block>,
}

/// The dominator tree for a single function.
pub struct SimpleDominatorTree {
    nodes: SecondaryMap<Block, DomNode>,

    /// CFG post-order of all reachable blocks.
    postorder: Vec<Block>,

    /// Scratch traversal state used by `compute_postorder()`.
    dfs: Dfs,

    valid: bool,
}

/// Methods for querying the dominator tree.
impl SimpleDominatorTree {
    /// Is `block` reachable from the entry block?
    pub fn is_reachable(&self, block: Block) -> bool {
        self.nodes[block].rpo_number != 0
    }

    /// Get the CFG post-order of blocks that was used to compute the dominator tree.
    ///
    /// Note that this post-order is not updated automatically when the CFG is modified. It is
    /// computed from scratch and cached by `compute()`.
    pub fn cfg_postorder(&self) -> &[Block] {
        debug_assert!(self.is_valid());
        &self.postorder
    }

    /// Returns the immediate dominator of `block`.
    ///
    /// `block_a` is said to *dominate* `block_b` if all control flow paths from the function
    /// entry to `block_b` must go through `block_a`.
    ///
    /// The *immediate dominator* is the dominator that is closest to `block`. All other dominators
    /// also dominate the immediate dominator.
    ///
    /// This returns `None` if `block` is not reachable from the entry block, or if it is the entry block
    /// which has no dominators.
    pub fn idom(&self, block: Block) -> Option<Block> {
        self.nodes[block].idom.into()
    }

    /// Compare two blocks relative to the reverse post-order.
    pub fn rpo_cmp_block(&self, a: Block, b: Block) -> Ordering {
        self.nodes[a].rpo_number.cmp(&self.nodes[b].rpo_number)
    }

    /// Compare two program points relative to a reverse post-order traversal of the control-flow
    /// graph.
    ///
    /// Return `Ordering::Less` if `a` comes before `b` in the RPO.
    ///
    /// If `a` and `b` belong to the same block, compare their relative position in the block.
    pub fn rpo_cmp<A, B>(&self, a: A, b: B, layout: &Layout) -> Ordering
    where
        A: Into<ProgramPoint>,
        B: Into<ProgramPoint>,
    {
        let a = a.into();
        let b = b.into();
        self.rpo_cmp_block(layout.pp_block(a), layout.pp_block(b))
            .then_with(|| layout.pp_cmp(a, b))
    }

    /// Returns `true` if `a` dominates `b`.
    ///
    /// This means that every control-flow path from the function entry to `b` must go through `a`.
    ///
    /// Dominance is ill defined for unreachable blocks. This function can always determine
    /// dominance for instructions in the same block, but otherwise returns `false` if either block
    /// is unreachable.
    ///
    /// An instruction is considered to dominate itself.
    /// A block is also considered to dominate itself.
    pub fn dominates<A, B>(&self, a: A, b: B, layout: &Layout) -> bool
    where
        A: Into<ProgramPoint>,
        B: Into<ProgramPoint>,
    {
        let a = a.into();
        let b = b.into();
        match a {
            ProgramPoint::Block(block_a) => match b {
                ProgramPoint::Block(block_b) => self.block_dominates(block_a, block_b),
                ProgramPoint::Inst(inst_b) => {
                    let block_b = layout
                        .inst_block(inst_b)
                        .expect("Instruction not in layout.");
                    self.block_dominates(block_a, block_b)
                }
            },
            ProgramPoint::Inst(inst_a) => {
                let block_a: Block = layout
                    .inst_block(inst_a)
                    .expect("Instruction not in layout.");
                match b {
                    ProgramPoint::Block(block_b) => {
                        block_a != block_b && self.block_dominates(block_a, block_b)
                    }
                    ProgramPoint::Inst(inst_b) => {
                        let block_b = layout
                            .inst_block(inst_b)
                            .expect("Instruction not in layout.");
                        if block_a == block_b {
                            layout.pp_cmp(a, b) != Ordering::Greater
                        } else {
                            self.block_dominates(block_a, block_b)
                        }
                    }
                }
            }
        }
    }

    /// Returns `true` if `block_a` dominates `block_b`.
    ///
    /// A block is considered to dominate itself.
    fn block_dominates(&self, block_a: Block, mut block_b: Block) -> bool {
        let rpo_a = self.nodes[block_a].rpo_number;

        // Run a finger up the dominator tree from b until we see a.
        // Do nothing if b is unreachable.
        while rpo_a < self.nodes[block_b].rpo_number {
            let idom = match self.idom(block_b) {
                Some(idom) => idom,
                None => return false, // a is unreachable, so we climbed past the entry
            };
            block_b = idom;
        }

        block_a == block_b
    }

    /// Compute the common dominator of two basic blocks.
    ///
    /// Both basic blocks are assumed to be reachable.
    fn common_dominator(&self, mut a: Block, mut b: Block) -> Block {
        loop {
            match self.rpo_cmp_block(a, b) {
                Ordering::Less => {
                    // `a` comes before `b` in the RPO. Move `b` up.
                    let idom = self.nodes[b].idom.expect("Unreachable basic block?");
                    b = idom;
                }
                Ordering::Greater => {
                    // `b` comes before `a` in the RPO. Move `a` up.
                    let idom = self.nodes[a].idom.expect("Unreachable basic block?");
                    a = idom;
                }
                Ordering::Equal => break,
            }
        }

        debug_assert_eq!(a, b, "Unreachable block passed to common_dominator?");

        a
    }
}

impl SimpleDominatorTree {
    /// Allocate a new blank dominator tree. Use `compute` to compute the dominator tree for a
    /// function.
    pub fn new() -> Self {
        Self {
            nodes: SecondaryMap::new(),
            postorder: Vec::new(),
            dfs: Dfs::new(),
            valid: false,
        }
    }

    /// Allocate and compute a dominator tree.
    pub fn with_function(func: &Function, cfg: &ControlFlowGraph) -> Self {
        let block_capacity = func.layout.block_capacity();
        let mut domtree = Self {
            nodes: SecondaryMap::with_capacity(block_capacity),
            postorder: Vec::with_capacity(block_capacity),
            dfs: Dfs::new(),
            valid: false,
        };
        domtree.compute(func, cfg);
        domtree
    }

    /// Reset and compute a CFG post-order and dominator tree.
    pub fn compute(&mut self, func: &Function, cfg: &ControlFlowGraph) {
        let _tt = timing::domtree();
        debug_assert!(cfg.is_valid());
        self.compute_postorder(func);
        self.compute_domtree(func, cfg);
        self.valid = true;
    }

    /// Clear the data structures used to represent the dominator tree. This will leave the tree in
    /// a state where `is_valid()` returns false.
    pub fn clear(&mut self) {
        self.nodes.clear();
        self.postorder.clear();
        self.valid = false;
    }

    /// Check if the dominator tree is in a valid state.
    ///
    /// Note that this doesn't perform any kind of validity checks. It simply checks if the
    /// `compute()` method has been called since the last `clear()`. It does not check that the
    /// dominator tree is consistent with the CFG.
    pub fn is_valid(&self) -> bool {
        self.valid
    }

    /// Reset all internal data structures and compute a post-order of the control flow graph.
    ///
    /// This leaves `rpo_number == 1` for all reachable blocks, 0 for unreachable ones.
    fn compute_postorder(&mut self, func: &Function) {
        self.clear();
        self.nodes.resize(func.dfg.num_blocks());
        self.postorder.extend(self.dfs.post_order_iter(func));
    }

    /// Build a dominator tree from a control flow graph using Keith D. Cooper's
    /// "Simple, Fast Dominator Algorithm."
    fn compute_domtree(&mut self, func: &Function, cfg: &ControlFlowGraph) {
        // During this algorithm, `rpo_number` has the following values:
        //
        // 0: block is not reachable.
        // 1: block is reachable, but has not yet been visited during the first pass. This is set by
        // `compute_postorder`.
        // 2+: block is reachable and has an assigned RPO number.

        // We'll be iterating over a reverse post-order of the CFG, skipping the entry block.
        let (entry_block, postorder) = match self.postorder.as_slice().split_last() {
            Some((&eb, rest)) => (eb, rest),
            None => return,
        };
        debug_assert_eq!(Some(entry_block), func.layout.entry_block());

        // Do a first pass where we assign RPO numbers to all reachable nodes.
        self.nodes[entry_block].rpo_number = 2 * STRIDE;
        for (rpo_idx, &block) in postorder.iter().rev().enumerate() {
            // Update the current node and give it an RPO number.
            // The entry block got 2, the rest start at 3 by multiples of STRIDE to leave
            // room for future dominator tree modifications.
            //
            // Since `compute_idom` will only look at nodes with an assigned RPO number, the
            // function will never see an uninitialized predecessor.
            //
            // Due to the nature of the post-order traversal, every node we visit will have at
            // least one predecessor that has previously been visited during this RPO.
            self.nodes[block] = DomNode {
                idom: self.compute_idom(block, cfg).into(),
                rpo_number: (rpo_idx as u32 + 3) * STRIDE,
            }
        }

        // Now that we have RPO numbers for everything and initial immediate dominator estimates,
        // iterate until convergence.
        //
        // If the function is free of irreducible control flow, this will exit after one iteration.
        let mut changed = true;
        while changed {
            changed = false;
            for &block in postorder.iter().rev() {
                let idom = self.compute_idom(block, cfg).into();
                if self.nodes[block].idom != idom {
                    self.nodes[block].idom = idom;
                    changed = true;
                }
            }
        }
    }

    // Compute the immediate dominator for `block` using the current `idom` states for the reachable
    // nodes.
    fn compute_idom(&self, block: Block, cfg: &ControlFlowGraph) -> Block {
        // Get an iterator with just the reachable, already visited predecessors to `block`.
        // Note that during the first pass, `rpo_number` is 1 for reachable blocks that haven't
        // been visited yet, 0 for unreachable blocks.
        let mut reachable_preds = cfg
            .pred_iter(block)
            .filter(|&BlockPredecessor { block: pred, .. }| self.nodes[pred].rpo_number > 1)
            .map(|pred| pred.block);

        // The RPO must visit at least one predecessor before this node.
        let mut idom = reachable_preds
            .next()
            .expect("block node must have one reachable predecessor");

        for pred in reachable_preds {
            idom = self.common_dominator(idom, pred);
        }

        idom
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::cursor::{Cursor, FuncCursor};
    use crate::ir::types::*;
    use crate::ir::{InstBuilder, TrapCode};

    #[test]
    fn empty() {
        let func = Function::new();
        let cfg = ControlFlowGraph::with_function(&func);
        debug_assert!(cfg.is_valid());
        let dtree = SimpleDominatorTree::with_function(&func, &cfg);
        assert_eq!(0, dtree.nodes.keys().count());
        assert_eq!(dtree.cfg_postorder(), &[]);
    }

    #[test]
    fn unreachable_node() {
        let mut func = Function::new();
        let block0 = func.dfg.make_block();
        let v0 = func.dfg.append_block_param(block0, I32);
        let block1 = func.dfg.make_block();
        let block2 = func.dfg.make_block();
        let trap_block = func.dfg.make_block();

        let mut cur = FuncCursor::new(&mut func);

        cur.insert_block(block0);
        cur.ins().brif(v0, block2, &[], trap_block, &[]);

        cur.insert_block(trap_block);
        cur.ins().trap(TrapCode::unwrap_user(1));

        cur.insert_block(block1);
        let v1 = cur.ins().iconst(I32, 1);
        let v2 = cur.ins().iadd(v0, v1);
        cur.ins().jump(block0, &[v2]);

        cur.insert_block(block2);
        cur.ins().return_(&[v0]);

        let cfg = ControlFlowGraph::with_function(cur.func);
        let dt = SimpleDominatorTree::with_function(cur.func, &cfg);

        // Fall-through-first, prune-at-source DFT:
        //
        // block0 {
        //   brif block2 {
        //     trap
        //     block2 {
        //       return
        //     } block2
        // } block0
        assert_eq!(dt.cfg_postorder(), &[block2, trap_block, block0]);

        let v2_def = cur.func.dfg.value_def(v2).unwrap_inst();
        assert!(!dt.dominates(v2_def, block0, &cur.func.layout));
        assert!(!dt.dominates(block0, v2_def, &cur.func.layout));

        assert!(dt.dominates(block0, block0, &cur.func.layout));
        assert!(!dt.dominates(block0, block1, &cur.func.layout));
        assert!(dt.dominates(block0, block2, &cur.func.layout));
        assert!(!dt.dominates(block1, block0, &cur.func.layout));
        assert!(dt.dominates(block1, block1, &cur.func.layout));
        assert!(!dt.dominates(block1, block2, &cur.func.layout));
        assert!(!dt.dominates(block2, block0, &cur.func.layout));
        assert!(!dt.dominates(block2, block1, &cur.func.layout));
        assert!(dt.dominates(block2, block2, &cur.func.layout));
    }

    #[test]
    fn non_zero_entry_block() {
        let mut func = Function::new();
        let block0 = func.dfg.make_block();
        let block1 = func.dfg.make_block();
        let block2 = func.dfg.make_block();
        let block3 = func.dfg.make_block();
        let cond = func.dfg.append_block_param(block3, I32);

        let mut cur = FuncCursor::new(&mut func);

        cur.insert_block(block3);
        let jmp_block3_block1 = cur.ins().jump(block1, &[]);

        cur.insert_block(block1);
        let br_block1_block0_block2 = cur.ins().brif(cond, block0, &[], block2, &[]);

        cur.insert_block(block2);
        cur.ins().jump(block0, &[]);

        cur.insert_block(block0);

        let cfg = ControlFlowGraph::with_function(cur.func);
        let dt = SimpleDominatorTree::with_function(cur.func, &cfg);

        // Fall-through-first, prune-at-source DFT:
        //
        // block3 {
        //   block3:jump block1 {
        //     block1 {
        //       block1:brif block0 {
        //         block1:jump block2 {
        //           block2 {
        //             block2:jump block0 (seen)
        //           } block2
        //         } block1:jump block2
        //         block0 {
        //         } block0
        //       } block1:brif block0
        //     } block1
        //   } block3:jump block1
        // } block3

        assert_eq!(dt.cfg_postorder(), &[block0, block2, block1, block3]);

        assert_eq!(cur.func.layout.entry_block().unwrap(), block3);
        assert_eq!(dt.idom(block3), None);
        assert_eq!(dt.idom(block1).unwrap(), block3);
        assert_eq!(dt.idom(block2).unwrap(), block1);
        assert_eq!(dt.idom(block0).unwrap(), block1);

        assert!(dt.dominates(
            br_block1_block0_block2,
            br_block1_block0_block2,
            &cur.func.layout
        ));
        assert!(!dt.dominates(br_block1_block0_block2, jmp_block3_block1, &cur.func.layout));
        assert!(dt.dominates(jmp_block3_block1, br_block1_block0_block2, &cur.func.layout));

        assert_eq!(
            dt.rpo_cmp(block3, block3, &cur.func.layout),
            Ordering::Equal
        );
        assert_eq!(dt.rpo_cmp(block3, block1, &cur.func.layout), Ordering::Less);
        assert_eq!(
            dt.rpo_cmp(block3, jmp_block3_block1, &cur.func.layout),
            Ordering::Less
        );
        assert_eq!(
            dt.rpo_cmp(jmp_block3_block1, br_block1_block0_block2, &cur.func.layout),
            Ordering::Less
        );
    }

    #[test]
    fn backwards_layout() {
        let mut func = Function::new();
        let block0 = func.dfg.make_block();
        let block1 = func.dfg.make_block();
        let block2 = func.dfg.make_block();

        let mut cur = FuncCursor::new(&mut func);

        cur.insert_block(block0);
        let jmp02 = cur.ins().jump(block2, &[]);

        cur.insert_block(block1);
        let trap = cur.ins().trap(TrapCode::unwrap_user(5));

        cur.insert_block(block2);
        let jmp21 = cur.ins().jump(block1, &[]);

        let cfg = ControlFlowGraph::with_function(cur.func);
        let dt = SimpleDominatorTree::with_function(cur.func, &cfg);

        assert_eq!(cur.func.layout.entry_block(), Some(block0));
        assert_eq!(dt.idom(block0), None);
        assert_eq!(dt.idom(block1), Some(block2));
        assert_eq!(dt.idom(block2), Some(block0));

        assert!(dt.dominates(block0, block0, &cur.func.layout));
        assert!(dt.dominates(block0, jmp02, &cur.func.layout));
        assert!(dt.dominates(block0, block1, &cur.func.layout));
        assert!(dt.dominates(block0, trap, &cur.func.layout));
        assert!(dt.dominates(block0, block2, &cur.func.layout));
        assert!(dt.dominates(block0, jmp21, &cur.func.layout));

        assert!(!dt.dominates(jmp02, block0, &cur.func.layout));
        assert!(dt.dominates(jmp02, jmp02, &cur.func.layout));
        assert!(dt.dominates(jmp02, block1, &cur.func.layout));
        assert!(dt.dominates(jmp02, trap, &cur.func.layout));
        assert!(dt.dominates(jmp02, block2, &cur.func.layout));
        assert!(dt.dominates(jmp02, jmp21, &cur.func.layout));

        assert!(!dt.dominates(block1, block0, &cur.func.layout));
        assert!(!dt.dominates(block1, jmp02, &cur.func.layout));
        assert!(dt.dominates(block1, block1, &cur.func.layout));
        assert!(dt.dominates(block1, trap, &cur.func.layout));
        assert!(!dt.dominates(block1, block2, &cur.func.layout));
        assert!(!dt.dominates(block1, jmp21, &cur.func.layout));

        assert!(!dt.dominates(trap, block0, &cur.func.layout));
        assert!(!dt.dominates(trap, jmp02, &cur.func.layout));
        assert!(!dt.dominates(trap, block1, &cur.func.layout));
        assert!(dt.dominates(trap, trap, &cur.func.layout));
        assert!(!dt.dominates(trap, block2, &cur.func.layout));
        assert!(!dt.dominates(trap, jmp21, &cur.func.layout));

        assert!(!dt.dominates(block2, block0, &cur.func.layout));
        assert!(!dt.dominates(block2, jmp02, &cur.func.layout));
        assert!(dt.dominates(block2, block1, &cur.func.layout));
        assert!(dt.dominates(block2, trap, &cur.func.layout));
        assert!(dt.dominates(block2, block2, &cur.func.layout));
        assert!(dt.dominates(block2, jmp21, &cur.func.layout));

        assert!(!dt.dominates(jmp21, block0, &cur.func.layout));
        assert!(!dt.dominates(jmp21, jmp02, &cur.func.layout));
        assert!(dt.dominates(jmp21, block1, &cur.func.layout));
        assert!(dt.dominates(jmp21, trap, &cur.func.layout));
        assert!(!dt.dominates(jmp21, block2, &cur.func.layout));
        assert!(dt.dominates(jmp21, jmp21, &cur.func.layout));
    }

    #[test]
    fn insts_same_block() {
        let mut func = Function::new();
        let block0 = func.dfg.make_block();

        let mut cur = FuncCursor::new(&mut func);

        cur.insert_block(block0);
        let v1 = cur.ins().iconst(I32, 1);
        let v2 = cur.ins().iadd(v1, v1);
        let v3 = cur.ins().iadd(v2, v2);
        cur.ins().return_(&[]);

        let cfg = ControlFlowGraph::with_function(cur.func);
        let dt = SimpleDominatorTree::with_function(cur.func, &cfg);

        let v1_def = cur.func.dfg.value_def(v1).unwrap_inst();
        let v2_def = cur.func.dfg.value_def(v2).unwrap_inst();
        let v3_def = cur.func.dfg.value_def(v3).unwrap_inst();

        assert!(dt.dominates(v1_def, v2_def, &cur.func.layout));
        assert!(dt.dominates(v2_def, v3_def, &cur.func.layout));
        assert!(dt.dominates(v1_def, v3_def, &cur.func.layout));

        assert!(!dt.dominates(v2_def, v1_def, &cur.func.layout));
        assert!(!dt.dominates(v3_def, v2_def, &cur.func.layout));
        assert!(!dt.dominates(v3_def, v1_def, &cur.func.layout));

        assert!(dt.dominates(v2_def, v2_def, &cur.func.layout));
        assert!(dt.dominates(block0, block0, &cur.func.layout));

        assert!(dt.dominates(block0, v1_def, &cur.func.layout));
        assert!(dt.dominates(block0, v2_def, &cur.func.layout));
        assert!(dt.dominates(block0, v3_def, &cur.func.layout));

        assert!(!dt.dominates(v1_def, block0, &cur.func.layout));
        assert!(!dt.dominates(v2_def, block0, &cur.func.layout));
        assert!(!dt.dominates(v3_def, block0, &cur.func.layout));
    }
}