1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
//! Data structures for representing decoded wasm modules.
use crate::prelude::*;
use crate::*;
use alloc::collections::BTreeMap;
use core::ops::Range;
use cranelift_entity::{packed_option::ReservedValue, EntityRef};
use serde_derive::{Deserialize, Serialize};
/// Implementation styles for WebAssembly linear memory.
#[derive(Debug, Clone, Hash, Serialize, Deserialize)]
pub enum MemoryStyle {
/// The actual memory can be resized and moved.
Dynamic {
/// Extra space to reserve when a memory must be moved due to growth.
reserve: u64,
},
/// Address space is allocated up front.
Static {
/// The number of bytes which are reserved for this linear memory. Only
/// the lower bytes which represent the actual linear memory need be
/// mapped, but other bytes must be guaranteed to be unmapped.
byte_reservation: u64,
},
}
impl MemoryStyle {
/// Decide on an implementation style for the given `Memory`.
pub fn for_memory(memory: Memory, tunables: &Tunables) -> (Self, u64) {
let is_static =
// Ideally we would compare against (an upper bound on) the target's
// page size, but unfortunately that is a little hard to plumb
// through here.
memory.page_size_log2 >= Memory::DEFAULT_PAGE_SIZE_LOG2
&& tunables.signals_based_traps
&& match memory.maximum_byte_size() {
Ok(mut maximum) => {
if tunables.static_memory_bound_is_maximum {
maximum = maximum.min(tunables.static_memory_reservation);
}
// Ensure the minimum is less than the maximum; the minimum might exceed the maximum
// when the memory is artificially bounded via `static_memory_bound_is_maximum` above
memory.minimum_byte_size().unwrap() <= maximum
&& maximum <= tunables.static_memory_reservation
}
// If the maximum size of this memory is not representable with
// `u64` then use the `static_memory_bound_is_maximum` to indicate
// whether it's a static memory or not. It should be ok to discard
// the linear memory's maximum size here as growth to the maximum is
// always fallible and never guaranteed.
Err(_) => tunables.static_memory_bound_is_maximum,
};
if is_static {
return (
Self::Static {
byte_reservation: tunables.static_memory_reservation,
},
tunables.static_memory_offset_guard_size,
);
}
// Otherwise, make it dynamic.
(
Self::Dynamic {
reserve: tunables.dynamic_memory_growth_reserve,
},
tunables.dynamic_memory_offset_guard_size,
)
}
}
/// A WebAssembly linear memory description along with our chosen style for
/// implementing it.
#[derive(Debug, Clone, Hash, Serialize, Deserialize)]
pub struct MemoryPlan {
/// The WebAssembly linear memory description.
pub memory: Memory,
/// Our chosen implementation style.
pub style: MemoryStyle,
/// Chosen size of a guard page before the linear memory allocation.
pub pre_guard_size: u64,
/// Our chosen offset-guard size.
pub offset_guard_size: u64,
}
impl MemoryPlan {
/// Draw up a plan for implementing a `Memory`.
pub fn for_memory(memory: Memory, tunables: &Tunables) -> Self {
let (style, offset_guard_size) = MemoryStyle::for_memory(memory, tunables);
Self {
memory,
style,
offset_guard_size,
pre_guard_size: if tunables.guard_before_linear_memory {
offset_guard_size
} else {
0
},
}
}
}
/// A WebAssembly linear memory initializer.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct MemoryInitializer {
/// The index of a linear memory to initialize.
pub memory_index: MemoryIndex,
/// The base offset to start this segment at.
pub offset: ConstExpr,
/// The range of the data to write within the linear memory.
///
/// This range indexes into a separately stored data section which will be
/// provided with the compiled module's code as well.
pub data: Range<u32>,
}
/// Similar to the above `MemoryInitializer` but only used when memory
/// initializers are statically known to be valid.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct StaticMemoryInitializer {
/// The 64-bit offset, in bytes, of where this initializer starts.
pub offset: u64,
/// The range of data to write at `offset`, where these indices are indexes
/// into the compiled wasm module's data section.
pub data: Range<u32>,
}
/// The type of WebAssembly linear memory initialization to use for a module.
#[derive(Debug, Serialize, Deserialize)]
pub enum MemoryInitialization {
/// Memory initialization is segmented.
///
/// Segmented initialization can be used for any module, but it is required
/// if:
///
/// * A data segment referenced an imported memory.
/// * A data segment uses a global base.
///
/// Segmented initialization is performed by processing the complete set of
/// data segments when the module is instantiated.
///
/// This is the default memory initialization type.
Segmented(Vec<MemoryInitializer>),
/// Memory initialization is statically known and involves a single `memcpy`
/// or otherwise simply making the defined data visible.
///
/// To be statically initialized everything must reference a defined memory
/// and all data segments have a statically known in-bounds base (no
/// globals).
///
/// This form of memory initialization is a more optimized version of
/// `Segmented` where memory can be initialized with one of a few methods:
///
/// * First it could be initialized with a single `memcpy` of data from the
/// module to the linear memory.
/// * Otherwise techniques like `mmap` are also possible to make this data,
/// which might reside in a compiled module on disk, available immediately
/// in a linear memory's address space.
///
/// To facilitate the latter of these techniques the `try_static_init`
/// function below, which creates this variant, takes a host page size
/// argument which can page-align everything to make mmap-ing possible.
Static {
/// The initialization contents for each linear memory.
///
/// This array has, for each module's own linear memory, the contents
/// necessary to initialize it. If the memory has a `None` value then no
/// initialization is necessary (it's zero-filled). Otherwise with
/// `Some` the first element of the tuple is the offset in memory to
/// start the initialization and the `Range` is the range within the
/// final data section of the compiled module of bytes to copy into the
/// memory.
///
/// The offset, range base, and range end are all guaranteed to be page
/// aligned to the page size passed in to `try_static_init`.
map: PrimaryMap<MemoryIndex, Option<StaticMemoryInitializer>>,
},
}
impl Default for MemoryInitialization {
fn default() -> Self {
Self::Segmented(Vec::new())
}
}
impl MemoryInitialization {
/// Returns whether this initialization is of the form
/// `MemoryInitialization::Segmented`.
pub fn is_segmented(&self) -> bool {
match self {
MemoryInitialization::Segmented(_) => true,
_ => false,
}
}
/// Performs the memory initialization steps for this set of initializers.
///
/// This will perform wasm initialization in compliance with the wasm spec
/// and how data segments are processed. This doesn't need to necessarily
/// only be called as part of initialization, however, as it's structured to
/// allow learning about memory ahead-of-time at compile time possibly.
///
/// This function will return true if all memory initializers are processed
/// successfully. If any initializer hits an error or, for example, a
/// global value is needed but `None` is returned, then false will be
/// returned. At compile-time this typically means that the "error" in
/// question needs to be deferred to runtime, and at runtime this means
/// that an invalid initializer has been found and a trap should be
/// generated.
pub fn init_memory(&self, state: &mut dyn InitMemory) -> bool {
let initializers = match self {
// Fall through below to the segmented memory one-by-one
// initialization.
MemoryInitialization::Segmented(list) => list,
// If previously switched to static initialization then pass through
// all those parameters here to the `write` callback.
//
// Note that existence of `Static` already guarantees that all
// indices are in-bounds.
MemoryInitialization::Static { map } => {
for (index, init) in map {
if let Some(init) = init {
let result = state.write(index, init);
if !result {
return result;
}
}
}
return true;
}
};
for initializer in initializers {
let &MemoryInitializer {
memory_index,
ref offset,
ref data,
} = initializer;
// First up determine the start/end range and verify that they're
// in-bounds for the initial size of the memory at `memory_index`.
// Note that this can bail if we don't have access to globals yet
// (e.g. this is a task happening before instantiation at
// compile-time).
let start = match state.eval_offset(memory_index, offset) {
Some(start) => start,
None => return false,
};
let len = u64::try_from(data.len()).unwrap();
let end = match start.checked_add(len) {
Some(end) => end,
None => return false,
};
match state.memory_size_in_bytes(memory_index) {
Ok(max) => {
if end > max {
return false;
}
}
// Note that computing the minimum can overflow if the page size
// is the default 64KiB and the memory's minimum size in pages
// is `1 << 48`, the maximum number of minimum pages for 64-bit
// memories. We don't return `false` to signal an error here and
// instead defer the error to runtime, when it will be
// impossible to allocate that much memory anyways.
Err(_) => {}
}
// The limits of the data segment have been validated at this point
// so the `write` callback is called with the range of data being
// written. Any erroneous result is propagated upwards.
let init = StaticMemoryInitializer {
offset: start,
data: data.clone(),
};
let result = state.write(memory_index, &init);
if !result {
return result;
}
}
return true;
}
}
/// The various callbacks provided here are used to drive the smaller bits of
/// memory initialization.
pub trait InitMemory {
/// Returns the size, in bytes, of the memory specified. For compile-time
/// purposes this would be the memory type's minimum size.
fn memory_size_in_bytes(&mut self, memory_index: MemoryIndex) -> Result<u64, SizeOverflow>;
/// Returns the value of the constant expression, as a `u64`. Note that
/// this may involve zero-extending a 32-bit global to a 64-bit number. May
/// return `None` to indicate that the expression involves a value which is
/// not available yet.
fn eval_offset(&mut self, memory_index: MemoryIndex, expr: &ConstExpr) -> Option<u64>;
/// A callback used to actually write data. This indicates that the
/// specified memory must receive the specified range of data at the
/// specified offset. This can return false on failure.
fn write(&mut self, memory_index: MemoryIndex, init: &StaticMemoryInitializer) -> bool;
}
/// Implementation styles for WebAssembly tables.
#[derive(Debug, Clone, Hash, Serialize, Deserialize)]
pub enum TableStyle {
/// Signatures are stored in the table and checked in the caller.
CallerChecksSignature {
/// Whether this table is initialized lazily and requires an
/// initialization check on every access.
lazy_init: bool,
},
}
impl TableStyle {
/// Decide on an implementation style for the given `Table`.
pub fn for_table(_table: Table, tunables: &Tunables) -> Self {
Self::CallerChecksSignature {
lazy_init: tunables.table_lazy_init,
}
}
}
/// A WebAssembly table description along with our chosen style for
/// implementing it.
#[derive(Debug, Clone, Hash, Serialize, Deserialize)]
pub struct TablePlan {
/// The WebAssembly table description.
pub table: Table,
/// Our chosen implementation style.
pub style: TableStyle,
}
impl TablePlan {
/// Draw up a plan for implementing a `Table`.
pub fn for_table(table: Table, tunables: &Tunables) -> Self {
let style = TableStyle::for_table(table, tunables);
Self { table, style }
}
}
/// Table initialization data for all tables in the module.
#[derive(Debug, Default, Serialize, Deserialize)]
pub struct TableInitialization {
/// Initial values for tables defined within the module itself.
///
/// This contains the initial values and initializers for tables defined
/// within a wasm, so excluding imported tables. This initializer can
/// represent null-initialized tables, element-initialized tables (e.g. with
/// the function-references proposal), or precomputed images of table
/// initialization. For example table initializers to a table that are all
/// in-bounds will get removed from `segment` and moved into
/// `initial_values` here.
pub initial_values: PrimaryMap<DefinedTableIndex, TableInitialValue>,
/// Element segments present in the initial wasm module which are executed
/// at instantiation time.
///
/// These element segments are iterated over during instantiation to apply
/// any segments that weren't already moved into `initial_values` above.
pub segments: Vec<TableSegment>,
}
/// Initial value for all elements in a table.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum TableInitialValue {
/// Initialize each table element to null, optionally setting some elements
/// to non-null given the precomputed image.
Null {
/// A precomputed image of table initializers for this table.
///
/// This image is constructed during `try_func_table_init` and
/// null-initialized elements are represented with
/// `FuncIndex::reserved_value()`. Note that this image is empty by
/// default and may not encompass the entire span of the table in which
/// case the elements are initialized to null.
precomputed: Vec<FuncIndex>,
},
/// An arbitrary const expression.
Expr(ConstExpr),
}
/// A WebAssembly table initializer segment.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct TableSegment {
/// The index of a table to initialize.
pub table_index: TableIndex,
/// The base offset to start this segment at.
pub offset: ConstExpr,
/// The values to write into the table elements.
pub elements: TableSegmentElements,
}
/// Elements of a table segment, either a list of functions or list of arbitrary
/// expressions.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum TableSegmentElements {
/// A sequential list of functions where `FuncIndex::reserved_value()`
/// indicates a null function.
Functions(Box<[FuncIndex]>),
/// Arbitrary expressions, aka either functions, null or a load of a global.
Expressions(Box<[ConstExpr]>),
}
impl TableSegmentElements {
/// Returns the number of elements in this segment.
pub fn len(&self) -> u64 {
match self {
Self::Functions(s) => u64::try_from(s.len()).unwrap(),
Self::Expressions(s) => u64::try_from(s.len()).unwrap(),
}
}
}
/// A translated WebAssembly module, excluding the function bodies and
/// memory initializers.
#[derive(Default, Debug, Serialize, Deserialize)]
pub struct Module {
/// The name of this wasm module, often found in the wasm file.
pub name: Option<String>,
/// All import records, in the order they are declared in the module.
pub initializers: Vec<Initializer>,
/// Exported entities.
pub exports: IndexMap<String, EntityIndex>,
/// The module "start" function, if present.
pub start_func: Option<FuncIndex>,
/// WebAssembly table initialization data, per table.
pub table_initialization: TableInitialization,
/// WebAssembly linear memory initializer.
pub memory_initialization: MemoryInitialization,
/// WebAssembly passive elements.
pub passive_elements: Vec<TableSegmentElements>,
/// The map from passive element index (element segment index space) to index in `passive_elements`.
pub passive_elements_map: BTreeMap<ElemIndex, usize>,
/// The map from passive data index (data segment index space) to index in `passive_data`.
pub passive_data_map: BTreeMap<DataIndex, Range<u32>>,
/// Types declared in the wasm module.
pub types: PrimaryMap<TypeIndex, ModuleInternedTypeIndex>,
/// Number of imported or aliased functions in the module.
pub num_imported_funcs: usize,
/// Number of imported or aliased tables in the module.
pub num_imported_tables: usize,
/// Number of imported or aliased memories in the module.
pub num_imported_memories: usize,
/// Number of imported or aliased globals in the module.
pub num_imported_globals: usize,
/// Number of functions that "escape" from this module may need to have a
/// `VMFuncRef` constructed for them.
///
/// This is also the number of functions in the `functions` array below with
/// an `func_ref` index (and is the maximum func_ref index).
pub num_escaped_funcs: usize,
/// Number of call-indirect caches.
pub num_call_indirect_caches: usize,
/// Types of functions, imported and local.
pub functions: PrimaryMap<FuncIndex, FunctionType>,
/// WebAssembly tables.
pub table_plans: PrimaryMap<TableIndex, TablePlan>,
/// WebAssembly linear memory plans.
pub memory_plans: PrimaryMap<MemoryIndex, MemoryPlan>,
/// WebAssembly global variables.
pub globals: PrimaryMap<GlobalIndex, Global>,
/// WebAssembly global initializers for locally-defined globals.
pub global_initializers: PrimaryMap<DefinedGlobalIndex, ConstExpr>,
}
/// Initialization routines for creating an instance, encompassing imports,
/// modules, instances, aliases, etc.
#[derive(Debug, Serialize, Deserialize)]
pub enum Initializer {
/// An imported item is required to be provided.
Import {
/// Name of this import
name: String,
/// The field name projection of this import
field: String,
/// Where this import will be placed, which also has type information
/// about the import.
index: EntityIndex,
},
}
impl Module {
/// Allocates the module data structures.
pub fn new() -> Self {
Module::default()
}
/// Convert a `DefinedFuncIndex` into a `FuncIndex`.
#[inline]
pub fn func_index(&self, defined_func: DefinedFuncIndex) -> FuncIndex {
FuncIndex::new(self.num_imported_funcs + defined_func.index())
}
/// Convert a `FuncIndex` into a `DefinedFuncIndex`. Returns None if the
/// index is an imported function.
#[inline]
pub fn defined_func_index(&self, func: FuncIndex) -> Option<DefinedFuncIndex> {
if func.index() < self.num_imported_funcs {
None
} else {
Some(DefinedFuncIndex::new(
func.index() - self.num_imported_funcs,
))
}
}
/// Test whether the given function index is for an imported function.
#[inline]
pub fn is_imported_function(&self, index: FuncIndex) -> bool {
index.index() < self.num_imported_funcs
}
/// Convert a `DefinedTableIndex` into a `TableIndex`.
#[inline]
pub fn table_index(&self, defined_table: DefinedTableIndex) -> TableIndex {
TableIndex::new(self.num_imported_tables + defined_table.index())
}
/// Convert a `TableIndex` into a `DefinedTableIndex`. Returns None if the
/// index is an imported table.
#[inline]
pub fn defined_table_index(&self, table: TableIndex) -> Option<DefinedTableIndex> {
if table.index() < self.num_imported_tables {
None
} else {
Some(DefinedTableIndex::new(
table.index() - self.num_imported_tables,
))
}
}
/// Test whether the given table index is for an imported table.
#[inline]
pub fn is_imported_table(&self, index: TableIndex) -> bool {
index.index() < self.num_imported_tables
}
/// Convert a `DefinedMemoryIndex` into a `MemoryIndex`.
#[inline]
pub fn memory_index(&self, defined_memory: DefinedMemoryIndex) -> MemoryIndex {
MemoryIndex::new(self.num_imported_memories + defined_memory.index())
}
/// Convert a `MemoryIndex` into a `DefinedMemoryIndex`. Returns None if the
/// index is an imported memory.
#[inline]
pub fn defined_memory_index(&self, memory: MemoryIndex) -> Option<DefinedMemoryIndex> {
if memory.index() < self.num_imported_memories {
None
} else {
Some(DefinedMemoryIndex::new(
memory.index() - self.num_imported_memories,
))
}
}
/// Convert a `DefinedMemoryIndex` into an `OwnedMemoryIndex`. Returns None
/// if the index is an imported memory.
#[inline]
pub fn owned_memory_index(&self, memory: DefinedMemoryIndex) -> OwnedMemoryIndex {
assert!(
memory.index() < self.memory_plans.len(),
"non-shared memory must have an owned index"
);
// Once we know that the memory index is not greater than the number of
// plans, we can iterate through the plans up to the memory index and
// count how many are not shared (i.e., owned).
let owned_memory_index = self
.memory_plans
.iter()
.skip(self.num_imported_memories)
.take(memory.index())
.filter(|(_, mp)| !mp.memory.shared)
.count();
OwnedMemoryIndex::new(owned_memory_index)
}
/// Test whether the given memory index is for an imported memory.
#[inline]
pub fn is_imported_memory(&self, index: MemoryIndex) -> bool {
index.index() < self.num_imported_memories
}
/// Convert a `DefinedGlobalIndex` into a `GlobalIndex`.
#[inline]
pub fn global_index(&self, defined_global: DefinedGlobalIndex) -> GlobalIndex {
GlobalIndex::new(self.num_imported_globals + defined_global.index())
}
/// Convert a `GlobalIndex` into a `DefinedGlobalIndex`. Returns None if the
/// index is an imported global.
#[inline]
pub fn defined_global_index(&self, global: GlobalIndex) -> Option<DefinedGlobalIndex> {
if global.index() < self.num_imported_globals {
None
} else {
Some(DefinedGlobalIndex::new(
global.index() - self.num_imported_globals,
))
}
}
/// Test whether the given global index is for an imported global.
#[inline]
pub fn is_imported_global(&self, index: GlobalIndex) -> bool {
index.index() < self.num_imported_globals
}
/// Returns an iterator of all the imports in this module, along with their
/// module name, field name, and type that's being imported.
pub fn imports(&self) -> impl ExactSizeIterator<Item = (&str, &str, EntityType)> {
self.initializers.iter().map(move |i| match i {
Initializer::Import { name, field, index } => {
(name.as_str(), field.as_str(), self.type_of(*index))
}
})
}
/// Returns the type of an item based on its index
pub fn type_of(&self, index: EntityIndex) -> EntityType {
match index {
EntityIndex::Global(i) => EntityType::Global(self.globals[i]),
EntityIndex::Table(i) => EntityType::Table(self.table_plans[i].table),
EntityIndex::Memory(i) => EntityType::Memory(self.memory_plans[i].memory),
EntityIndex::Function(i) => {
EntityType::Function(EngineOrModuleTypeIndex::Module(self.functions[i].signature))
}
}
}
/// Appends a new function to this module with the given type information,
/// used for functions that either don't escape or aren't certain whether
/// they escape yet.
pub fn push_function(&mut self, signature: ModuleInternedTypeIndex) -> FuncIndex {
self.functions.push(FunctionType {
signature,
func_ref: FuncRefIndex::reserved_value(),
})
}
/// Returns an iterator over all of the defined function indices in this
/// module.
pub fn defined_func_indices(&self) -> impl Iterator<Item = DefinedFuncIndex> {
(0..self.functions.len() - self.num_imported_funcs).map(|i| DefinedFuncIndex::new(i))
}
}
/// Type information about functions in a wasm module.
#[derive(Debug, Serialize, Deserialize)]
pub struct FunctionType {
/// The type of this function, indexed into the module-wide type tables for
/// a module compilation.
pub signature: ModuleInternedTypeIndex,
/// The index into the funcref table, if present. Note that this is
/// `reserved_value()` if the function does not escape from a module.
pub func_ref: FuncRefIndex,
}
impl FunctionType {
/// Returns whether this function's type is one that "escapes" the current
/// module, meaning that the function is exported, used in `ref.func`, used
/// in a table, etc.
pub fn is_escaping(&self) -> bool {
!self.func_ref.is_reserved_value()
}
}
/// Index into the funcref table within a VMContext for a function.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct FuncRefIndex(u32);
cranelift_entity::entity_impl!(FuncRefIndex);