zerocopy/pointer/
inner.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
// Copyright 2024 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.

use core::{marker::PhantomData, ops::Range, ptr::NonNull};

#[allow(unused_imports)]
use crate::util::polyfills::NumExt as _;
use crate::{
    layout::{CastType, DstLayout, MetadataCastError},
    util::AsAddress,
    AlignmentError, CastError, KnownLayout, PointerMetadata, SizeError,
};

pub(crate) use _def::PtrInner;

mod _def {
    use super::*;
    /// The inner pointer stored inside a [`Ptr`][crate::Ptr].
    ///
    /// `PtrInner<'a, T>` is [covariant] in `'a` and invariant in `T`.
    ///
    /// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
    pub(crate) struct PtrInner<'a, T>
    where
        T: ?Sized,
    {
        /// # Invariants
        ///
        /// 0. If `ptr`'s referent is not zero sized, then `ptr` is derived from
        ///    some valid Rust allocation, `A`.
        /// 1. If `ptr`'s referent is not zero sized, then `ptr` has valid
        ///    provenance for `A`.
        /// 2. If `ptr`'s referent is not zero sized, then `ptr` addresses a
        ///    byte range which is entirely contained in `A`.
        /// 3. `ptr` addresses a byte range whose length fits in an `isize`.
        /// 4. `ptr` addresses a byte range which does not wrap around the
        ///     address space.
        /// 5. If `ptr`'s referent is not zero sized,`A` is guaranteed to live
        ///    for at least `'a`.
        ptr: NonNull<T>,
        // SAFETY: `&'a UnsafeCell<T>` is covariant in `'a` and invariant in `T`
        // [1]. We use this construction rather than the equivalent `&mut T`,
        // because our MSRV of 1.65 prohibits `&mut` types in const contexts.
        //
        // [1] https://doc.rust-lang.org/1.81.0/reference/subtyping.html#variance
        _marker: PhantomData<&'a core::cell::UnsafeCell<T>>,
    }

    impl<'a, T: 'a + ?Sized> Copy for PtrInner<'a, T> {}
    impl<'a, T: 'a + ?Sized> Clone for PtrInner<'a, T> {
        fn clone(&self) -> PtrInner<'a, T> {
            // SAFETY: None of the invariants on `ptr` are affected by having
            // multiple copies of a `PtrInner`.
            *self
        }
    }

    impl<'a, T: 'a + ?Sized> PtrInner<'a, T> {
        /// Constructs a `Ptr` from a [`NonNull`].
        ///
        /// # Safety
        ///
        /// The caller promises that:
        ///
        /// 0. If `ptr`'s referent is not zero sized, then `ptr` is derived from
        ///    some valid Rust allocation, `A`.
        /// 1. If `ptr`'s referent is not zero sized, then `ptr` has valid
        ///    provenance for `A`.
        /// 2. If `ptr`'s referent is not zero sized, then `ptr` addresses a
        ///    byte range which is entirely contained in `A`.
        /// 3. `ptr` addresses a byte range whose length fits in an `isize`.
        /// 4. `ptr` addresses a byte range which does not wrap around the
        ///    address space.
        /// 5. If `ptr`'s referent is not zero sized, then `A` is guaranteed to
        ///    live for at least `'a`.
        pub(crate) const unsafe fn new(ptr: NonNull<T>) -> PtrInner<'a, T> {
            // SAFETY: The caller has promised to satisfy all safety invariants
            // of `PtrInner`.
            Self { ptr, _marker: PhantomData }
        }

        /// Converts this `PtrInner<T>` to a [`NonNull<T>`].
        ///
        /// Note that this method does not consume `self`. The caller should
        /// watch out for `unsafe` code which uses the returned `NonNull` in a
        /// way that violates the safety invariants of `self`.
        pub(crate) const fn as_non_null(&self) -> NonNull<T> {
            self.ptr
        }
    }
}

impl<'a, T: ?Sized> PtrInner<'a, T> {
    /// Constructs a `PtrInner` from a reference.
    #[inline]
    pub(crate) fn from_ref(ptr: &'a T) -> Self {
        let ptr = NonNull::from(ptr);
        // SAFETY:
        // 0. If `ptr`'s referent is not zero sized, then `ptr`, by invariant on
        //    `&'a T`, is derived from some valid Rust allocation, `A`.
        // 1. If `ptr`'s referent is not zero sized, then `ptr`, by invariant on
        //    `&'a T`, has valid provenance for `A`.
        // 2. If `ptr`'s referent is not zero sized, then `ptr`, by invariant on
        //    `&'a T`, addresses a byte range which is entirely contained in
        //    `A`.
        // 3. `ptr`, by invariant on `&'a T`, addresses a byte range whose
        //    length fits in an `isize`.
        // 4. `ptr`, by invariant on `&'a T`, addresses a byte range which does
        //    not wrap around the address space.
        // 5. If `ptr`'s referent is not zero sized, then `A`, by invariant on
        //    `&'a T`, is guaranteed to live for at least `'a`.
        unsafe { Self::new(ptr) }
    }

    /// Constructs a `PtrInner` from a mutable reference.
    #[inline]
    pub(crate) fn from_mut(ptr: &'a mut T) -> Self {
        let ptr = NonNull::from(ptr);
        // SAFETY:
        // 0. If `ptr`'s referent is not zero sized, then `ptr`, by invariant on
        //    `&'a mut T`, is derived from some valid Rust allocation, `A`.
        // 1. If `ptr`'s referent is not zero sized, then `ptr`, by invariant on
        //    `&'a mut T`, has valid provenance for `A`.
        // 2. If `ptr`'s referent is not zero sized, then `ptr`, by invariant on
        //    `&'a mut T`, addresses a byte range which is entirely contained in
        //    `A`.
        // 3. `ptr`, by invariant on `&'a mut T`, addresses a byte range whose
        //    length fits in an `isize`.
        // 4. `ptr`, by invariant on `&'a mut T`, addresses a byte range which
        //    does not wrap around the address space.
        // 5. If `ptr`'s referent is not zero sized, then `A`, by invariant on
        //    `&'a mut T`, is guaranteed to live for at least `'a`.
        unsafe { Self::new(ptr) }
    }
}

#[allow(clippy::needless_lifetimes)]
impl<'a, T> PtrInner<'a, [T]> {
    /// Creates a pointer which addresses the given `range` of self.
    ///
    /// # Safety
    ///
    /// `range` is a valid range (`start <= end`) and `end <= self.len()`.
    pub(crate) unsafe fn slice_unchecked(self, range: Range<usize>) -> Self {
        let base = self.as_non_null().cast::<T>().as_ptr();

        // SAFETY: The caller promises that `start <= end <= self.len()`. By
        // invariant, if `self`'s referent is not zero-sized, then `self` refers
        // to a byte range which is contained within a single allocation, which
        // is no more than `isize::MAX` bytes long, and which does not wrap
        // around the address space. Thus, this pointer arithmetic remains
        // in-bounds of the same allocation, and does not wrap around the
        // address space. The offset (in bytes) does not overflow `isize`.
        //
        // If `self`'s referent is zero-sized, then these conditions are
        // trivially satisfied.
        let base = unsafe { base.add(range.start) };

        // SAFETY: The caller promises that `start <= end`, and so this will not
        // underflow.
        #[allow(unstable_name_collisions, clippy::incompatible_msrv)]
        let len = unsafe { range.end.unchecked_sub(range.start) };

        let ptr = core::ptr::slice_from_raw_parts_mut(base, len);

        // SAFETY: By invariant, `self`'s address is non-null and its range does
        // not wrap around the address space. Since, by the preceding lemma,
        // `ptr` addresses a range within that addressed by `self`, `ptr` is
        // non-null.
        let ptr = unsafe { NonNull::new_unchecked(ptr) };

        // SAFETY:
        //
        // Lemma 0: `ptr` addresses a subset of the bytes addressed by `self`,
        //          and has the same provenance. Proof: The caller guarantees
        // that `start <= end <= self.len()`. Thus, `base` is in-bounds of
        //        `self`, and `base + (end - start)` is also in-bounds of self.
        //        Finally, `ptr` is constructed using provenance-preserving
        //        operations.
        //
        // 0. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is not
        //    zero sized, then `ptr` is derived from some valid Rust allocation,
        //    `A`.
        // 1. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is not
        //    zero sized, then `ptr` has valid provenance for `A`.
        // 2. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is not
        //    zero sized, then `ptr` addresses a byte range which is entirely
        //    contained in `A`.
        // 3. Per Lemma 0 and by invariant on `self`, `ptr` addresses a byte
        //    range whose length fits in an `isize`.
        // 4. Per Lemma 0 and by invariant on `self`, `ptr` addresses a byte
        //    range which does not wrap around the address space.
        // 5. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is not
        //    zero sized, then `A` is guaranteed to live for at least `'a`.
        unsafe { PtrInner::new(ptr) }
    }

    /// Splits the slice in two.
    ///
    /// # Safety
    ///
    /// The caller promises that `l_len <= self.len()`.
    ///
    /// Given `let (left, right) = ptr.split_at(l_len)`, it is guaranteed
    /// that `left` and `right` are contiguous and non-overlapping.
    pub(crate) unsafe fn split_at(self, l_len: usize) -> (Self, Self) {
        // SAFETY: The caller promises that `l_len <= self.len()`.
        // Trivially, `0 <= l_len`.
        let left = unsafe { self.slice_unchecked(0..l_len) };

        // SAFETY: The caller promises that `l_len <= self.len() =
        // slf.len()`. Trivially, `slf.len() <= slf.len()`.
        let right = unsafe { self.slice_unchecked(l_len..self.len()) };

        // SAFETY: `left` and `right` are non-overlapping. Proof: `left` is
        // constructed from `slf` with `l_len` as its (exclusive) upper
        // bound, while `right` is constructed from `slf` with `l_len` as
        // its (inclusive) lower bound. Thus, no index is a member of both
        // ranges.
        (left, right)
    }

    /// Iteratively projects the elements `PtrInner<T>` from `PtrInner<[T]>`.
    pub(crate) fn iter(&self) -> impl Iterator<Item = PtrInner<'a, T>> {
        // TODO(#429): Once `NonNull::cast` documents that it preserves
        // provenance, cite those docs.
        let base = self.as_non_null().cast::<T>().as_ptr();
        (0..self.len()).map(move |i| {
            // TODO(https://github.com/rust-lang/rust/issues/74265): Use
            // `NonNull::get_unchecked_mut`.

            // SAFETY: If the following conditions are not satisfied
            // `pointer::cast` may induce Undefined Behavior [1]:
            //
            // > - The computed offset, `count * size_of::<T>()` bytes, must not
            // >   overflow `isize``.
            // > - If the computed offset is non-zero, then `self` must be
            // >   derived from a pointer to some allocated object, and the
            // >   entire memory range between `self` and the result must be in
            // >   bounds of that allocated object. In particular, this range
            // >   must not “wrap around” the edge of the address space.
            //
            // [1] https://doc.rust-lang.org/std/primitive.pointer.html#method.add
            //
            // We satisfy both of these conditions here:
            // - By invariant on `Ptr`, `self` addresses a byte range whose
            //   length fits in an `isize`. Since `elem` is contained in `self`,
            //   the computed offset of `elem` must fit within `isize.`
            // - If the computed offset is non-zero, then this means that the
            //   referent is not zero-sized. In this case, `base` points to an
            //   allocated object (by invariant on `self`). Thus:
            //   - By contract, `self.len()` accurately reflects the number of
            //     elements in the slice. `i` is in bounds of `c.len()` by
            //     construction, and so the result of this addition cannot
            //     overflow past the end of the allocation referred to by `c`.
            //   - By invariant on `Ptr`, `self` addresses a byte range which
            //     does not wrap around the address space. Since `elem` is
            //     contained in `self`, the computed offset of `elem` must wrap
            //     around the address space.
            //
            // TODO(#429): Once `pointer::add` documents that it preserves
            // provenance, cite those docs.
            let elem = unsafe { base.add(i) };

            // SAFETY:
            //  - `elem` must not be null. `base` is constructed from a
            //    `NonNull` pointer, and the addition that produces `elem` must
            //    not overflow or wrap around, so `elem >= base > 0`.
            //
            // TODO(#429): Once `NonNull::new_unchecked` documents that it
            // preserves provenance, cite those docs.
            let elem = unsafe { NonNull::new_unchecked(elem) };

            // SAFETY: The safety invariants of `Ptr::new` (see definition) are
            // satisfied:
            // 0. If `elem`'s referent is not zero sized, then `elem` is derived
            //    from a valid Rust allocation, because `self` is derived from a
            //    valid Rust allocation, by invariant on `Ptr`.
            // 1. If `elem`'s referent is not zero sized, then `elem` has valid
            //    provenance for `self`, because it derived from `self` using a
            //    series of provenance-preserving operations.
            // 2. If `elem`'s referent is not zero sized, then `elem` is
            //    entirely contained in the allocation of `self` (see above).
            // 3. `elem` addresses a byte range whose length fits in an `isize`
            //    (see above).
            // 4. `elem` addresses a byte range which does not wrap around the
            //    address space (see above).
            // 5. If `elem`'s referent is not zero sized, then the allocation of
            //    `elem` is guaranteed to live for at least `'a`, because `elem`
            //    is entirely contained in `self`, which lives for at least `'a`
            //    by invariant on `Ptr`.
            unsafe { PtrInner::new(elem) }
        })
    }

    /// The number of slice elements in the object referenced by `self`.
    ///
    /// # Safety
    ///
    /// Unsafe code my rely on `len` satisfying the above contract.
    pub(crate) fn len(&self) -> usize {
        self.trailing_slice_len()
    }
}

#[allow(clippy::needless_lifetimes)]
impl<'a, T> PtrInner<'a, T>
where
    T: ?Sized + KnownLayout<PointerMetadata = usize>,
{
    /// The number of trailing slice elements in the object referenced by
    /// `self`.
    ///
    /// # Safety
    ///
    /// Unsafe code my rely on `trailing_slice_len` satisfying the above
    /// contract.
    pub(super) fn trailing_slice_len(&self) -> usize {
        T::pointer_to_metadata(self.as_non_null().as_ptr())
    }
}

impl<'a, T, const N: usize> PtrInner<'a, [T; N]> {
    /// Casts this pointer-to-array into a slice.
    ///
    /// # Safety
    ///
    /// Callers may assume that the returned `PtrInner` references the same
    /// address and length as `self`.
    #[allow(clippy::wrong_self_convention)]
    pub(crate) fn as_slice(self) -> PtrInner<'a, [T]> {
        let start = self.as_non_null().cast::<T>().as_ptr();
        let slice = core::ptr::slice_from_raw_parts_mut(start, N);
        // SAFETY: `slice` is not null, because it is derived from `start`
        // which is non-null.
        let slice = unsafe { NonNull::new_unchecked(slice) };
        // SAFETY: Lemma: In the following safety arguments, note that `slice`
        // is derived from `self` in two steps: first, by casting `self: [T; N]`
        // to `start: T`, then by constructing a pointer to a slice starting at
        // `start` of length `N`. As a result, `slice` references exactly the
        // same allocation as `self`, if any.
        //
        // 0. By the above lemma, if `slice`'s referent is not zero sized, then
        //    `slice` is derived from the same allocation as `self`, which, by
        //    invariant on `Ptr`, is valid.
        // 1. By the above lemma, if `slice`'s referent is not zero sized, then
        //    , `slice` has valid provenance for `A`, since it is derived from
        //    the pointer `self`, which, by invariant on `Ptr`, has valid
        //    provenance for `A`.
        // 2. By the above lemma, if `slice`'s referent is not zero sized, then
        //    `slice` addresses a byte range which is entirely contained in `A`,
        //    because it references exactly the same byte range as `self`,
        //    which, by invariant on `Ptr`, is entirely contained in `A`.
        // 3. By the above lemma, `slice` addresses a byte range whose length
        //    fits in an `isize`, since it addresses exactly the same byte range
        //    as `self`, which, by invariant on `Ptr`, has a length that fits in
        //    an `isize`.
        // 4. By the above lemma, `slice` addresses a byte range which does not
        //    wrap around the address space, since it addresses exactly the same
        //    byte range as `self`, which, by invariant on `Ptr`, does not wrap
        //    around the address space.
        // 5. By the above lemma, if `slice`'s referent is not zero sized, then
        //    `A` is guaranteed to live for at least `'a`, because it is derived
        //    from the same allocation as `self`, which, by invariant on `Ptr`,
        //    lives for at least `'a`.
        unsafe { PtrInner::new(slice) }
    }
}

impl<'a> PtrInner<'a, [u8]> {
    /// Attempts to cast `self` to a `U` using the given cast type.
    ///
    /// If `U` is a slice DST and pointer metadata (`meta`) is provided, then
    /// the cast will only succeed if it would produce an object with the given
    /// metadata.
    ///
    /// Returns `None` if the resulting `U` would be invalidly-aligned, if no
    /// `U` can fit in `self`, or if the provided pointer metadata describes an
    /// invalid instance of `U`. On success, returns a pointer to the
    /// largest-possible `U` which fits in `self`.
    ///
    /// # Safety
    ///
    /// The caller may assume that this implementation is correct, and may rely
    /// on that assumption for the soundness of their code. In particular, the
    /// caller may assume that, if `try_cast_into` returns `Some((ptr,
    /// remainder))`, then `ptr` and `remainder` refer to non-overlapping byte
    /// ranges within `self`, and that `ptr` and `remainder` entirely cover
    /// `self`. Finally:
    /// - If this is a prefix cast, `ptr` has the same address as `self`.
    /// - If this is a suffix cast, `remainder` has the same address as `self`.
    #[inline]
    pub(crate) fn try_cast_into<U>(
        self,
        cast_type: CastType,
        meta: Option<U::PointerMetadata>,
    ) -> Result<(PtrInner<'a, U>, PtrInner<'a, [u8]>), CastError<Self, U>>
    where
        U: 'a + ?Sized + KnownLayout,
    {
        let layout = match meta {
            None => U::LAYOUT,
            // This can return `None` if the metadata describes an object
            // which can't fit in an `isize`.
            Some(meta) => {
                let size = match meta.size_for_metadata(U::LAYOUT) {
                    Some(size) => size,
                    None => return Err(CastError::Size(SizeError::new(self))),
                };
                DstLayout { align: U::LAYOUT.align, size_info: crate::SizeInfo::Sized { size } }
            }
        };
        // PANICS: By invariant, the byte range addressed by
        // `self.as_non_null()` does not wrap around the address space. This
        // implies that the sum of the address (represented as a `usize`) and
        // length do not overflow `usize`, as required by
        // `validate_cast_and_convert_metadata`. Thus, this call to
        // `validate_cast_and_convert_metadata` will only panic if `U` is a DST
        // whose trailing slice element is zero-sized.
        let maybe_metadata = layout.validate_cast_and_convert_metadata(
            AsAddress::addr(self.as_non_null().as_ptr()),
            self.len(),
            cast_type,
        );

        let (elems, split_at) = match maybe_metadata {
            Ok((elems, split_at)) => (elems, split_at),
            Err(MetadataCastError::Alignment) => {
                // SAFETY: Since `validate_cast_and_convert_metadata` returned
                // an alignment error, `U` must have an alignment requirement
                // greater than one.
                let err = unsafe { AlignmentError::<_, U>::new_unchecked(self) };
                return Err(CastError::Alignment(err));
            }
            Err(MetadataCastError::Size) => return Err(CastError::Size(SizeError::new(self))),
        };

        // SAFETY: `validate_cast_and_convert_metadata` promises to return
        // `split_at <= self.len()`.
        let (l_slice, r_slice) = unsafe { self.split_at(split_at) };

        let (target, remainder) = match cast_type {
            CastType::Prefix => (l_slice, r_slice),
            CastType::Suffix => (r_slice, l_slice),
        };

        let base = target.as_non_null().cast::<u8>();

        let elems = <U as KnownLayout>::PointerMetadata::from_elem_count(elems);
        // For a slice DST type, if `meta` is `Some(elems)`, then we synthesize
        // `layout` to describe a sized type whose size is equal to the size of
        // the instance that we are asked to cast. For sized types,
        // `validate_cast_and_convert_metadata` returns `elems == 0`. Thus, in
        // this case, we need to use the `elems` passed by the caller, not the
        // one returned by `validate_cast_and_convert_metadata`.
        let elems = meta.unwrap_or(elems);

        let ptr = U::raw_from_ptr_len(base, elems);

        // SAFETY:
        // 0. By invariant, if `target`'s referent is not zero sized, then
        //    `target` is derived from some valid Rust allocation, `A`. By
        //    contract on `cast`, `ptr` is derived from `self`, and thus from
        //    the same valid Rust allocation, `A`.
        // 1. By invariant, if `target`'s referent is not zero sized, then
        //    `target` has provenance valid for some Rust allocation, `A`.
        //    Because `ptr` is derived from `target` via provenance-preserving
        //    operations, `ptr` will also have provenance valid for `A`.
        // -  `validate_cast_and_convert_metadata` promises that the object
        //    described by `elems` and `split_at` lives at a byte range which is
        //    a subset of the input byte range. Thus:
        //    2. Since, by invariant, if `target`'s referent is not zero sized,
        //       then `target` addresses a byte range which is entirely
        //       contained in `A`, so does `ptr`.
        //    3. Since, by invariant, `target` addresses a byte range whose
        //       length fits in an `isize`, so does `ptr`.
        //    4. Since, by invariant, `target` addresses a byte range which does
        //       not wrap around the address space, so does `ptr`.
        //    5. Since, by invariant, if `target`'s referent is not zero sized,
        //       then `target` refers to an allocation which is guaranteed to
        //       live for at least `'a`, so does `ptr`.
        Ok((unsafe { PtrInner::new(ptr) }, remainder))
    }
}

#[allow(clippy::needless_lifetimes)]
impl<'a, T> PtrInner<'a, T> {
    /// Performs an unaligned read of `self`'s referent.
    ///
    /// # Safety
    ///
    /// `self` must point to a properly initialized value of type `T`, and
    /// reading a copy of `T` must not violate `T`'s safety invariants.
    ///
    /// `self`'s referent must not be concurrently modified during this call.
    pub(crate) unsafe fn read_unaligned(self) -> T {
        let raw = self.as_non_null().as_ptr();
        // SAFETY: The caller promises that `self` points to a bit-valid `T` and
        // that reading a copy of it won't violate `T`'s safety invariants. The
        // caller promises that `self`'s referent won't be concurrently modified
        // during this operation.
        //
        // `raw` is valid for reads:
        // - `self.as_non_null()` returns a `NonNull`, which is guaranteed to be
        //   non-null.
        // - By invariant on `PtrInner`, `raw` is is either zero-sized or:
        //   - ...is within bounds of a single allocated object which lives for
        //     at least `'a`.
        //   - ...has valid provenance for that object.
        unsafe { core::ptr::read_unaligned(raw) }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_split_at() {
        const N: usize = 16;
        let arr = [1; N];
        let ptr = PtrInner::from_ref(&arr).as_slice();
        for i in 0..=N {
            assert_eq!(ptr.len(), N);
            // SAFETY: `i` is in bounds by construction.
            let (l, r) = unsafe { ptr.split_at(i) };
            // SAFETY: Points to a valid value by construction.
            let l_sum: usize = l.iter().map(|ptr| unsafe { ptr.read_unaligned() }).sum();
            // SAFETY: Points to a valid value by construction.
            let r_sum: usize = r.iter().map(|ptr| unsafe { ptr.read_unaligned() }).sum();
            assert_eq!(l_sum, i);
            assert_eq!(r_sum, N - i);
            assert_eq!(l_sum + r_sum, N);
        }
    }
}