zerocopy/pointer/inner.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
// Copyright 2024 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.
use core::{marker::PhantomData, ops::Range, ptr::NonNull};
#[allow(unused_imports)]
use crate::util::polyfills::NumExt as _;
use crate::{
layout::{CastType, DstLayout, MetadataCastError},
util::AsAddress,
AlignmentError, CastError, KnownLayout, PointerMetadata, SizeError,
};
pub(crate) use _def::PtrInner;
mod _def {
use super::*;
/// The inner pointer stored inside a [`Ptr`][crate::Ptr].
///
/// `PtrInner<'a, T>` is [covariant] in `'a` and invariant in `T`.
///
/// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
pub(crate) struct PtrInner<'a, T>
where
T: ?Sized,
{
/// # Invariants
///
/// 0. If `ptr`'s referent is not zero sized, then `ptr` is derived from
/// some valid Rust allocation, `A`.
/// 1. If `ptr`'s referent is not zero sized, then `ptr` has valid
/// provenance for `A`.
/// 2. If `ptr`'s referent is not zero sized, then `ptr` addresses a
/// byte range which is entirely contained in `A`.
/// 3. `ptr` addresses a byte range whose length fits in an `isize`.
/// 4. `ptr` addresses a byte range which does not wrap around the
/// address space.
/// 5. If `ptr`'s referent is not zero sized,`A` is guaranteed to live
/// for at least `'a`.
ptr: NonNull<T>,
// SAFETY: `&'a UnsafeCell<T>` is covariant in `'a` and invariant in `T`
// [1]. We use this construction rather than the equivalent `&mut T`,
// because our MSRV of 1.65 prohibits `&mut` types in const contexts.
//
// [1] https://doc.rust-lang.org/1.81.0/reference/subtyping.html#variance
_marker: PhantomData<&'a core::cell::UnsafeCell<T>>,
}
impl<'a, T: 'a + ?Sized> Copy for PtrInner<'a, T> {}
impl<'a, T: 'a + ?Sized> Clone for PtrInner<'a, T> {
fn clone(&self) -> PtrInner<'a, T> {
// SAFETY: None of the invariants on `ptr` are affected by having
// multiple copies of a `PtrInner`.
*self
}
}
impl<'a, T: 'a + ?Sized> PtrInner<'a, T> {
/// Constructs a `Ptr` from a [`NonNull`].
///
/// # Safety
///
/// The caller promises that:
///
/// 0. If `ptr`'s referent is not zero sized, then `ptr` is derived from
/// some valid Rust allocation, `A`.
/// 1. If `ptr`'s referent is not zero sized, then `ptr` has valid
/// provenance for `A`.
/// 2. If `ptr`'s referent is not zero sized, then `ptr` addresses a
/// byte range which is entirely contained in `A`.
/// 3. `ptr` addresses a byte range whose length fits in an `isize`.
/// 4. `ptr` addresses a byte range which does not wrap around the
/// address space.
/// 5. If `ptr`'s referent is not zero sized, then `A` is guaranteed to
/// live for at least `'a`.
pub(crate) const unsafe fn new(ptr: NonNull<T>) -> PtrInner<'a, T> {
// SAFETY: The caller has promised to satisfy all safety invariants
// of `PtrInner`.
Self { ptr, _marker: PhantomData }
}
/// Converts this `PtrInner<T>` to a [`NonNull<T>`].
///
/// Note that this method does not consume `self`. The caller should
/// watch out for `unsafe` code which uses the returned `NonNull` in a
/// way that violates the safety invariants of `self`.
pub(crate) const fn as_non_null(&self) -> NonNull<T> {
self.ptr
}
}
}
impl<'a, T: ?Sized> PtrInner<'a, T> {
/// Constructs a `PtrInner` from a reference.
#[inline]
pub(crate) fn from_ref(ptr: &'a T) -> Self {
let ptr = NonNull::from(ptr);
// SAFETY:
// 0. If `ptr`'s referent is not zero sized, then `ptr`, by invariant on
// `&'a T`, is derived from some valid Rust allocation, `A`.
// 1. If `ptr`'s referent is not zero sized, then `ptr`, by invariant on
// `&'a T`, has valid provenance for `A`.
// 2. If `ptr`'s referent is not zero sized, then `ptr`, by invariant on
// `&'a T`, addresses a byte range which is entirely contained in
// `A`.
// 3. `ptr`, by invariant on `&'a T`, addresses a byte range whose
// length fits in an `isize`.
// 4. `ptr`, by invariant on `&'a T`, addresses a byte range which does
// not wrap around the address space.
// 5. If `ptr`'s referent is not zero sized, then `A`, by invariant on
// `&'a T`, is guaranteed to live for at least `'a`.
unsafe { Self::new(ptr) }
}
/// Constructs a `PtrInner` from a mutable reference.
#[inline]
pub(crate) fn from_mut(ptr: &'a mut T) -> Self {
let ptr = NonNull::from(ptr);
// SAFETY:
// 0. If `ptr`'s referent is not zero sized, then `ptr`, by invariant on
// `&'a mut T`, is derived from some valid Rust allocation, `A`.
// 1. If `ptr`'s referent is not zero sized, then `ptr`, by invariant on
// `&'a mut T`, has valid provenance for `A`.
// 2. If `ptr`'s referent is not zero sized, then `ptr`, by invariant on
// `&'a mut T`, addresses a byte range which is entirely contained in
// `A`.
// 3. `ptr`, by invariant on `&'a mut T`, addresses a byte range whose
// length fits in an `isize`.
// 4. `ptr`, by invariant on `&'a mut T`, addresses a byte range which
// does not wrap around the address space.
// 5. If `ptr`'s referent is not zero sized, then `A`, by invariant on
// `&'a mut T`, is guaranteed to live for at least `'a`.
unsafe { Self::new(ptr) }
}
}
#[allow(clippy::needless_lifetimes)]
impl<'a, T> PtrInner<'a, [T]> {
/// Creates a pointer which addresses the given `range` of self.
///
/// # Safety
///
/// `range` is a valid range (`start <= end`) and `end <= self.len()`.
pub(crate) unsafe fn slice_unchecked(self, range: Range<usize>) -> Self {
let base = self.as_non_null().cast::<T>().as_ptr();
// SAFETY: The caller promises that `start <= end <= self.len()`. By
// invariant, if `self`'s referent is not zero-sized, then `self` refers
// to a byte range which is contained within a single allocation, which
// is no more than `isize::MAX` bytes long, and which does not wrap
// around the address space. Thus, this pointer arithmetic remains
// in-bounds of the same allocation, and does not wrap around the
// address space. The offset (in bytes) does not overflow `isize`.
//
// If `self`'s referent is zero-sized, then these conditions are
// trivially satisfied.
let base = unsafe { base.add(range.start) };
// SAFETY: The caller promises that `start <= end`, and so this will not
// underflow.
#[allow(unstable_name_collisions, clippy::incompatible_msrv)]
let len = unsafe { range.end.unchecked_sub(range.start) };
let ptr = core::ptr::slice_from_raw_parts_mut(base, len);
// SAFETY: By invariant, `self`'s address is non-null and its range does
// not wrap around the address space. Since, by the preceding lemma,
// `ptr` addresses a range within that addressed by `self`, `ptr` is
// non-null.
let ptr = unsafe { NonNull::new_unchecked(ptr) };
// SAFETY:
//
// Lemma 0: `ptr` addresses a subset of the bytes addressed by `self`,
// and has the same provenance. Proof: The caller guarantees
// that `start <= end <= self.len()`. Thus, `base` is in-bounds of
// `self`, and `base + (end - start)` is also in-bounds of self.
// Finally, `ptr` is constructed using provenance-preserving
// operations.
//
// 0. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is not
// zero sized, then `ptr` is derived from some valid Rust allocation,
// `A`.
// 1. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is not
// zero sized, then `ptr` has valid provenance for `A`.
// 2. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is not
// zero sized, then `ptr` addresses a byte range which is entirely
// contained in `A`.
// 3. Per Lemma 0 and by invariant on `self`, `ptr` addresses a byte
// range whose length fits in an `isize`.
// 4. Per Lemma 0 and by invariant on `self`, `ptr` addresses a byte
// range which does not wrap around the address space.
// 5. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is not
// zero sized, then `A` is guaranteed to live for at least `'a`.
unsafe { PtrInner::new(ptr) }
}
/// Splits the slice in two.
///
/// # Safety
///
/// The caller promises that `l_len <= self.len()`.
///
/// Given `let (left, right) = ptr.split_at(l_len)`, it is guaranteed
/// that `left` and `right` are contiguous and non-overlapping.
pub(crate) unsafe fn split_at(self, l_len: usize) -> (Self, Self) {
// SAFETY: The caller promises that `l_len <= self.len()`.
// Trivially, `0 <= l_len`.
let left = unsafe { self.slice_unchecked(0..l_len) };
// SAFETY: The caller promises that `l_len <= self.len() =
// slf.len()`. Trivially, `slf.len() <= slf.len()`.
let right = unsafe { self.slice_unchecked(l_len..self.len()) };
// SAFETY: `left` and `right` are non-overlapping. Proof: `left` is
// constructed from `slf` with `l_len` as its (exclusive) upper
// bound, while `right` is constructed from `slf` with `l_len` as
// its (inclusive) lower bound. Thus, no index is a member of both
// ranges.
(left, right)
}
/// Iteratively projects the elements `PtrInner<T>` from `PtrInner<[T]>`.
pub(crate) fn iter(&self) -> impl Iterator<Item = PtrInner<'a, T>> {
// TODO(#429): Once `NonNull::cast` documents that it preserves
// provenance, cite those docs.
let base = self.as_non_null().cast::<T>().as_ptr();
(0..self.len()).map(move |i| {
// TODO(https://github.com/rust-lang/rust/issues/74265): Use
// `NonNull::get_unchecked_mut`.
// SAFETY: If the following conditions are not satisfied
// `pointer::cast` may induce Undefined Behavior [1]:
//
// > - The computed offset, `count * size_of::<T>()` bytes, must not
// > overflow `isize``.
// > - If the computed offset is non-zero, then `self` must be
// > derived from a pointer to some allocated object, and the
// > entire memory range between `self` and the result must be in
// > bounds of that allocated object. In particular, this range
// > must not “wrap around” the edge of the address space.
//
// [1] https://doc.rust-lang.org/std/primitive.pointer.html#method.add
//
// We satisfy both of these conditions here:
// - By invariant on `Ptr`, `self` addresses a byte range whose
// length fits in an `isize`. Since `elem` is contained in `self`,
// the computed offset of `elem` must fit within `isize.`
// - If the computed offset is non-zero, then this means that the
// referent is not zero-sized. In this case, `base` points to an
// allocated object (by invariant on `self`). Thus:
// - By contract, `self.len()` accurately reflects the number of
// elements in the slice. `i` is in bounds of `c.len()` by
// construction, and so the result of this addition cannot
// overflow past the end of the allocation referred to by `c`.
// - By invariant on `Ptr`, `self` addresses a byte range which
// does not wrap around the address space. Since `elem` is
// contained in `self`, the computed offset of `elem` must wrap
// around the address space.
//
// TODO(#429): Once `pointer::add` documents that it preserves
// provenance, cite those docs.
let elem = unsafe { base.add(i) };
// SAFETY:
// - `elem` must not be null. `base` is constructed from a
// `NonNull` pointer, and the addition that produces `elem` must
// not overflow or wrap around, so `elem >= base > 0`.
//
// TODO(#429): Once `NonNull::new_unchecked` documents that it
// preserves provenance, cite those docs.
let elem = unsafe { NonNull::new_unchecked(elem) };
// SAFETY: The safety invariants of `Ptr::new` (see definition) are
// satisfied:
// 0. If `elem`'s referent is not zero sized, then `elem` is derived
// from a valid Rust allocation, because `self` is derived from a
// valid Rust allocation, by invariant on `Ptr`.
// 1. If `elem`'s referent is not zero sized, then `elem` has valid
// provenance for `self`, because it derived from `self` using a
// series of provenance-preserving operations.
// 2. If `elem`'s referent is not zero sized, then `elem` is
// entirely contained in the allocation of `self` (see above).
// 3. `elem` addresses a byte range whose length fits in an `isize`
// (see above).
// 4. `elem` addresses a byte range which does not wrap around the
// address space (see above).
// 5. If `elem`'s referent is not zero sized, then the allocation of
// `elem` is guaranteed to live for at least `'a`, because `elem`
// is entirely contained in `self`, which lives for at least `'a`
// by invariant on `Ptr`.
unsafe { PtrInner::new(elem) }
})
}
/// The number of slice elements in the object referenced by `self`.
///
/// # Safety
///
/// Unsafe code my rely on `len` satisfying the above contract.
pub(crate) fn len(&self) -> usize {
self.trailing_slice_len()
}
}
#[allow(clippy::needless_lifetimes)]
impl<'a, T> PtrInner<'a, T>
where
T: ?Sized + KnownLayout<PointerMetadata = usize>,
{
/// The number of trailing slice elements in the object referenced by
/// `self`.
///
/// # Safety
///
/// Unsafe code my rely on `trailing_slice_len` satisfying the above
/// contract.
pub(super) fn trailing_slice_len(&self) -> usize {
T::pointer_to_metadata(self.as_non_null().as_ptr())
}
}
impl<'a, T, const N: usize> PtrInner<'a, [T; N]> {
/// Casts this pointer-to-array into a slice.
///
/// # Safety
///
/// Callers may assume that the returned `PtrInner` references the same
/// address and length as `self`.
#[allow(clippy::wrong_self_convention)]
pub(crate) fn as_slice(self) -> PtrInner<'a, [T]> {
let start = self.as_non_null().cast::<T>().as_ptr();
let slice = core::ptr::slice_from_raw_parts_mut(start, N);
// SAFETY: `slice` is not null, because it is derived from `start`
// which is non-null.
let slice = unsafe { NonNull::new_unchecked(slice) };
// SAFETY: Lemma: In the following safety arguments, note that `slice`
// is derived from `self` in two steps: first, by casting `self: [T; N]`
// to `start: T`, then by constructing a pointer to a slice starting at
// `start` of length `N`. As a result, `slice` references exactly the
// same allocation as `self`, if any.
//
// 0. By the above lemma, if `slice`'s referent is not zero sized, then
// `slice` is derived from the same allocation as `self`, which, by
// invariant on `Ptr`, is valid.
// 1. By the above lemma, if `slice`'s referent is not zero sized, then
// , `slice` has valid provenance for `A`, since it is derived from
// the pointer `self`, which, by invariant on `Ptr`, has valid
// provenance for `A`.
// 2. By the above lemma, if `slice`'s referent is not zero sized, then
// `slice` addresses a byte range which is entirely contained in `A`,
// because it references exactly the same byte range as `self`,
// which, by invariant on `Ptr`, is entirely contained in `A`.
// 3. By the above lemma, `slice` addresses a byte range whose length
// fits in an `isize`, since it addresses exactly the same byte range
// as `self`, which, by invariant on `Ptr`, has a length that fits in
// an `isize`.
// 4. By the above lemma, `slice` addresses a byte range which does not
// wrap around the address space, since it addresses exactly the same
// byte range as `self`, which, by invariant on `Ptr`, does not wrap
// around the address space.
// 5. By the above lemma, if `slice`'s referent is not zero sized, then
// `A` is guaranteed to live for at least `'a`, because it is derived
// from the same allocation as `self`, which, by invariant on `Ptr`,
// lives for at least `'a`.
unsafe { PtrInner::new(slice) }
}
}
impl<'a> PtrInner<'a, [u8]> {
/// Attempts to cast `self` to a `U` using the given cast type.
///
/// If `U` is a slice DST and pointer metadata (`meta`) is provided, then
/// the cast will only succeed if it would produce an object with the given
/// metadata.
///
/// Returns `None` if the resulting `U` would be invalidly-aligned, if no
/// `U` can fit in `self`, or if the provided pointer metadata describes an
/// invalid instance of `U`. On success, returns a pointer to the
/// largest-possible `U` which fits in `self`.
///
/// # Safety
///
/// The caller may assume that this implementation is correct, and may rely
/// on that assumption for the soundness of their code. In particular, the
/// caller may assume that, if `try_cast_into` returns `Some((ptr,
/// remainder))`, then `ptr` and `remainder` refer to non-overlapping byte
/// ranges within `self`, and that `ptr` and `remainder` entirely cover
/// `self`. Finally:
/// - If this is a prefix cast, `ptr` has the same address as `self`.
/// - If this is a suffix cast, `remainder` has the same address as `self`.
#[inline]
pub(crate) fn try_cast_into<U>(
self,
cast_type: CastType,
meta: Option<U::PointerMetadata>,
) -> Result<(PtrInner<'a, U>, PtrInner<'a, [u8]>), CastError<Self, U>>
where
U: 'a + ?Sized + KnownLayout,
{
let layout = match meta {
None => U::LAYOUT,
// This can return `None` if the metadata describes an object
// which can't fit in an `isize`.
Some(meta) => {
let size = match meta.size_for_metadata(U::LAYOUT) {
Some(size) => size,
None => return Err(CastError::Size(SizeError::new(self))),
};
DstLayout { align: U::LAYOUT.align, size_info: crate::SizeInfo::Sized { size } }
}
};
// PANICS: By invariant, the byte range addressed by
// `self.as_non_null()` does not wrap around the address space. This
// implies that the sum of the address (represented as a `usize`) and
// length do not overflow `usize`, as required by
// `validate_cast_and_convert_metadata`. Thus, this call to
// `validate_cast_and_convert_metadata` will only panic if `U` is a DST
// whose trailing slice element is zero-sized.
let maybe_metadata = layout.validate_cast_and_convert_metadata(
AsAddress::addr(self.as_non_null().as_ptr()),
self.len(),
cast_type,
);
let (elems, split_at) = match maybe_metadata {
Ok((elems, split_at)) => (elems, split_at),
Err(MetadataCastError::Alignment) => {
// SAFETY: Since `validate_cast_and_convert_metadata` returned
// an alignment error, `U` must have an alignment requirement
// greater than one.
let err = unsafe { AlignmentError::<_, U>::new_unchecked(self) };
return Err(CastError::Alignment(err));
}
Err(MetadataCastError::Size) => return Err(CastError::Size(SizeError::new(self))),
};
// SAFETY: `validate_cast_and_convert_metadata` promises to return
// `split_at <= self.len()`.
let (l_slice, r_slice) = unsafe { self.split_at(split_at) };
let (target, remainder) = match cast_type {
CastType::Prefix => (l_slice, r_slice),
CastType::Suffix => (r_slice, l_slice),
};
let base = target.as_non_null().cast::<u8>();
let elems = <U as KnownLayout>::PointerMetadata::from_elem_count(elems);
// For a slice DST type, if `meta` is `Some(elems)`, then we synthesize
// `layout` to describe a sized type whose size is equal to the size of
// the instance that we are asked to cast. For sized types,
// `validate_cast_and_convert_metadata` returns `elems == 0`. Thus, in
// this case, we need to use the `elems` passed by the caller, not the
// one returned by `validate_cast_and_convert_metadata`.
let elems = meta.unwrap_or(elems);
let ptr = U::raw_from_ptr_len(base, elems);
// SAFETY:
// 0. By invariant, if `target`'s referent is not zero sized, then
// `target` is derived from some valid Rust allocation, `A`. By
// contract on `cast`, `ptr` is derived from `self`, and thus from
// the same valid Rust allocation, `A`.
// 1. By invariant, if `target`'s referent is not zero sized, then
// `target` has provenance valid for some Rust allocation, `A`.
// Because `ptr` is derived from `target` via provenance-preserving
// operations, `ptr` will also have provenance valid for `A`.
// - `validate_cast_and_convert_metadata` promises that the object
// described by `elems` and `split_at` lives at a byte range which is
// a subset of the input byte range. Thus:
// 2. Since, by invariant, if `target`'s referent is not zero sized,
// then `target` addresses a byte range which is entirely
// contained in `A`, so does `ptr`.
// 3. Since, by invariant, `target` addresses a byte range whose
// length fits in an `isize`, so does `ptr`.
// 4. Since, by invariant, `target` addresses a byte range which does
// not wrap around the address space, so does `ptr`.
// 5. Since, by invariant, if `target`'s referent is not zero sized,
// then `target` refers to an allocation which is guaranteed to
// live for at least `'a`, so does `ptr`.
Ok((unsafe { PtrInner::new(ptr) }, remainder))
}
}
#[allow(clippy::needless_lifetimes)]
impl<'a, T> PtrInner<'a, T> {
/// Performs an unaligned read of `self`'s referent.
///
/// # Safety
///
/// `self` must point to a properly initialized value of type `T`, and
/// reading a copy of `T` must not violate `T`'s safety invariants.
///
/// `self`'s referent must not be concurrently modified during this call.
pub(crate) unsafe fn read_unaligned(self) -> T {
let raw = self.as_non_null().as_ptr();
// SAFETY: The caller promises that `self` points to a bit-valid `T` and
// that reading a copy of it won't violate `T`'s safety invariants. The
// caller promises that `self`'s referent won't be concurrently modified
// during this operation.
//
// `raw` is valid for reads:
// - `self.as_non_null()` returns a `NonNull`, which is guaranteed to be
// non-null.
// - By invariant on `PtrInner`, `raw` is is either zero-sized or:
// - ...is within bounds of a single allocated object which lives for
// at least `'a`.
// - ...has valid provenance for that object.
unsafe { core::ptr::read_unaligned(raw) }
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_split_at() {
const N: usize = 16;
let arr = [1; N];
let ptr = PtrInner::from_ref(&arr).as_slice();
for i in 0..=N {
assert_eq!(ptr.len(), N);
// SAFETY: `i` is in bounds by construction.
let (l, r) = unsafe { ptr.split_at(i) };
// SAFETY: Points to a valid value by construction.
let l_sum: usize = l.iter().map(|ptr| unsafe { ptr.read_unaligned() }).sum();
// SAFETY: Points to a valid value by construction.
let r_sum: usize = r.iter().map(|ptr| unsafe { ptr.read_unaligned() }).sum();
assert_eq!(l_sum, i);
assert_eq!(r_sum, N - i);
assert_eq!(l_sum + r_sum, N);
}
}
}